• Title/Summary/Keyword: conventional forming

Search Result 560, Processing Time 0.03 seconds

Simulation-based Multi-stage Tool Design for an Electronic part with Ferritic Stainless Steel Sheet (400계 스테인리스 판재의 가전 부품 적용을 위한 전산해석 기반 다단 금형설계)

  • Park, K.D.;Jang, J.H.;Kim, S.H.;Kim, K.P.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.174-177
    • /
    • 2008
  • This paper replaces an conventional 300-austenitic stainless steel sheet to a 400-ferritic stainless steel for the cost reduction of a pulsator cover of a washing machine. However, ferritic stainless steel has poor formability in comparison with austenitic one. The low formability of ferritic steel results in problems during stamping such as fracture, wrinkling, shape inaccuracy and so on. Design modification of the stamping tool is carried out with the aid of the finite element analysis for multi-stage stamping process. The simulation results show that fracture occurs on top of the product while wrinkles are generated by the excess metal near the wing part. Modification of the initial stamping die is performed to improve metal flow and to eliminate problems during the stamping process. Simulation with the modified design fully demonstrates that safe forming is possible without inferiorities.

  • PDF

Study on the Fabrication of Mg Alloy Sheet by a Semi-Solid Forming Process (반고상 성형법에 의한 Mg 합금 박판재의 제조에 관한 연구)

  • Kim, Jeong-Min;Park, Bong-Koo;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of Korea Foundry Society
    • /
    • v.22 no.5
    • /
    • pp.245-251
    • /
    • 2002
  • Cast AZ91 and extruded AM50 alloys were isothermally heated as solid/liquid coexistent temperatures, and semi-solid formed into sheets. Mold filling ability of semi-solid slurry with different liquid fractions was investigated in relation to process variables such as injection speed and mold temperature. Relatively uniform distribution of solid particle size and liquid fraction were observed throughout the semi-solid formed sheet. AZ91 alloy sheets were also manufactured by conventional die casting and compared with the semi-solid formed. It was found that the surface was more smooth and the dimensional accuracy was higher in case of the semi-solid formed.

Analysis of Defect Characterization in a Rectangular Shape Flange Hydroforming Process (사각형상 플랜지 액압성형 공정 시 결함특성 분석)

  • Shin, S.G.R.;Joo, B.D.;Han, S.W.;Lee, C.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.5
    • /
    • pp.275-279
    • /
    • 2013
  • The tube hydroforming process has received much attention in the automotive industry because of its advantages compared to conventional manufacturing technologies. A wide range of products such as sub-frames, camshafts, radiator frames, axles and crankshafts are made by hydroforming process. The hydroformed parts often need to be structurally joined to other components during assembly. Therefore, these automotive parts need to be manufactured with a localized attachment flange. In this study, FE forming analyses of a part with a rectangular flanged shape was performed with Dynaform 5.5. Using the optimized conditions determined numerically, hydroforming experiments were performed. Then, the characterization of defects was analyzed. Finally, the accuracy of the optimized internal pressure condition as well as that of the initial ram position were evaluated. The results demonstrated that flanged parts can be successfully produced using the tube hydroforming process.

Unsteady State Analysis of Al Tube Hot Extrusion by A Porthole Die (포트홀 다이에 의한 Al 튜브의 비정상상태 열간 압출 공정 해석)

  • 조형호;이상곤;박종남;김병민
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.311-318
    • /
    • 2001
  • Porthole die extrusion has a great advantage in the forming of long hollow section tubes. It is difficult to produce long hollow section tubes with complicated section by the conventional extrusion process with a mandrel on the stem Because of the limit of the length of mandrel and the complexity of cross section. Porthole die extrusion is affected by many parameters, such as extrusion ratio, extrusion speed, die geometry, porthole number, bearing length etc. Up to now, most of studies about porthole die extrusion have been investigated by experiments or steady state FE-analysis. However, in this paper, porthole die extrusion is analysed by the unsteady state 3D FE-simulation. And the result of unsteady state analysis is compared with the experimental result. Also, the surface state of extruded tubes are examined for the various process conditions.

  • PDF

Transparent Conducting Film for Flat Panel Display using CNT by Electrospinning

  • Moon, Jin-San;Park, Jae-Hong;Han, Jae-Hee;Berdinsky, Alexander S.;Nam, Jae-Do;Lee, Dae-Hoi;Yoo, Ji-Beom
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.978-980
    • /
    • 2004
  • We report the preparation and properties of polymer paste solutions with CNTs using conventional paste forming process. Electrospinning has been used for the fabrication of nano-fiber composite. In this process, dispersion of CNTs is very important matter. So, we emphasize the necessity of dispersion of CNTs in the solution and investigate effects of process parameters of electrospinning. The advantage of simple electrospinning process will be discussed..

  • PDF

Optical Properties with Arc Tube Structure of Ceramic Metal-Halide Lamps (세라믹 메탈할라이드 램프의 아크튜브 구조에 따른 광학적 특성)

  • Kim, Woo-Young;Jang, Hyeok-Jin;Yang, Jong-Kyung;Park, Hyung-Jun;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.378-379
    • /
    • 2009
  • High intensity metal halide discharge lamp performance, specifically the generated luminous flux and light color content, depends critically on the arc tube design. Factors influencing the design and consequent lamp efficacy include : lamp size, geometry, arc tube composition, fill chemistry, electrode design and excitation modes. Shaping of Polycrystalline Alumina(PCA) can be realized by conventional ceramic processes. Several processes are applied nowadays. Well-known in the ceramic high pressure field for decades are the pressing and the extrusion method. Newly developed slurry and precious forming technologies give the one-body seamless tubes, which improve thickness uniformity and lighting performance. Now, we reported some optical properties with different arc tube structures of ceramic metal halide lamps.

  • PDF

Realization of High Q Inductor on Low Resistivity Silicon Wafer using a New and simple Trench Technique (새로운 트랜치 방법을 이용한 저저항 실리콘 기판에서의 High Q 인덕터의 구현)

  • 이홍수;이진효유현규김대용
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.629-632
    • /
    • 1998
  • This paper presents a new and simple technique to realize high Q inductor on low resistivity silicon wafer with 6 $\Omega$.cm. This technique is very compatible with bipolar and CMOS standard silicon process. By forming the deep and narrow trenches on the low resistivity wafer substrate under inductor pattern, oxidizing and filling with undoped polysilicon, the low resistivity silicon wafer acts as high resistivity wafer being suitable for the fabrication of high Q inductor. By using this technique the quality factor (Q) for 8-turn spiral inductor was improved up to max. 10.3 at 2 ㎓ with 3.0 $\mu\textrm{m}$ of metal thickness. The experiment results show that Q on low resistivity silicon wafer with the trench technique have been improved more than 2 times compared to the conventional low resistivity silicon wafer without trenches.

  • PDF

Effect of Packing Characteristics on the sintering Propertiesof Pyrophyllite (랍석분쇄물의 충전성이 그 소결성에 미치는 영향)

  • 지응업;최상욱;류태원
    • Journal of the Korean Ceramic Society
    • /
    • v.14 no.4
    • /
    • pp.236-241
    • /
    • 1977
  • Three kinds of specimen, consisting of the graded pyrophyllite particles alone, a substituent of 8 percent fire clay for the finer portion ($F_2$) of it, and 0.8 percent inorganic binder-added composite were prepared under the following conditions respectively; moisture content=4.5~5.0%, forming pressure=250kg/$\textrm{cm}^2$ and sintering temperature=1, 000~1, 30$0^{\circ}C$. The various properties such as modulus of rupture, apparent porosity, bulk specific gravity, pore size and pore distributiion were measured in order to collaborate with sintering phenomena. The results obtained are as follows: (1) Apparent porosity isgradually decreased with rising the sintering temperature to 1, 25$0^{\circ}C$. (2) The binder-added specimen showed the lowest value in porosity. (3) The optimum sintering temperature of specimens was considered to be 1, 25$0^{\circ}C$. (4) The wider differences between pore volumes of specimens could be obtained by method of mercurypenetration porosimeter than by the conventional method for porosity.

  • PDF

A Study on the Forming of Parts for Automobile using Fine Blanking Process (파인블랭킹 공정을 이용한 자동차용 부품의 가공에 관한 연구)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.56-61
    • /
    • 1999
  • The fine blanking is a process of pressworking which makes possible to produce thick sheet metal parts of finished sheared surface and close dimensional accuracy over whole material thickness in single blanki ng operation. Fine blanked parts in general are characterized by their cleanly sheared surface over the whole sock thickness and accurate size for the specific functions. The fine blanking technology is urgently needed to remove secondary operations which are necessary in conventional blanking operation and cost reduction. In this study, the effect of material texture and vee-ring on parts for automobile is investigated by experimental observation and analysis.

  • PDF

A study on electrical and mechanical properties and press formability of a Cu/Ag composite sheet (Cu/Ag 복합판재의 전기/기계적 성질 및 프레스 성형성에 관한 연구)

  • Shin, Je-Sik
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.95-100
    • /
    • 2012
  • In this study, a novel Cu composite sheet with embedded high electric conduction path was developed as another alternative for the interconnect materials possessing high electrical conductivity as well as high strength. The Cu composite sheet was fabricated by forming Ag conduction paths not within the interior but on the surface of a high strength Cu substrate by damascene electroplating process. As a result, the electrical conductivity increased by 40% thanks to mesh type Ag conduction paths, while the ultimate tensile strength decreased by 20%. The interfacial fracture resistance of Cu composite sheet prepared by damascene electroplating increased by above 50 times compared to Cu composite sheet by conventional electroplating. For feasibility test for practical application, a leadframe for LED module was manufactured by a progressive blanking and piercing processes, and the blanked surface profile was evaluated as a function of the volume fraction of Ag conduction paths. As Ag conduction path became finer, pressing formability improved.

  • PDF