• Title/Summary/Keyword: conventional concrete

Search Result 1,216, Processing Time 0.028 seconds

Effect of fiber reinforcing on instantaneous deflection of self-compacting concrete one-way slabs under early-age loading

  • Vakhshouri, Behnam;Nejadi, Shami
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.155-163
    • /
    • 2018
  • The Early-age construction loading and changing properties of concrete, especially in the multi-story structures can affect the slab deflection, significantly. Based on previously conducted experiment on eight simply-supported one-way slabs this paper investigates the effect of concrete type, fiber type and content, loading value, cracking moment, ultimate moment and applied moment on the instantaneous deflection of Self-Compacting Concrete (SCC) slabs. Two distinct loading levels equal to 30% and 40% of the ultimate capacity of the slab section were applied on the slabs at the age of 14 days. A wide range of the existing models of the effective moment of inertia which are mainly developed for conventional concrete elements, were investigated. Comparison of the experimental deflection values with predictions of the existing models shows considerable differences between the recorded and estimated instantaneous deflection of SCC slabs. Calculated elastic deflection of slabs at the ages of 14 and 28 days were also compared with the experimental deflection of slabs. Based on sensitivity analysis of the effective parameters, a new model is proposed and verified to predict the effective moment of inertia in SCC slabs with and without fiber reinforcing under two different loading levels at the age of 14 days.

Instantaneous and time-dependent flexural cracking models of reinforced self-compacting concrete slabs with and without fibres

  • Aslani, Farhad;Nejadi, Shami;Samali, Bijan
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.223-243
    • /
    • 2015
  • Self-compacting concrete (SCC) can be placed and compacted under its own weight with little or no compaction. It is cohesive enough to be handled without segregation or bleeding. Modifications in the mix design of SCC may significantly influence the material's mechanical properties. Therefore, it is vital to investigate whether all the assumed hypotheses about conventional concrete (CC) are also valid for SCC structures. The aim in this paper is to develop analytical models for flexural cracking that describe in appropriate detail the observed cracking behaviour of the reinforced concrete flexural one way slabs tested. The crack width and crack spacing calculation procedures outlined in five international codes, namely Eurocode 2 (1991), CEB-FIP (1990), ACI318-99 (1999), Eurocode 2 (2004), and fib-Model Code (2010), are presented and crack widths and crack spacing are accordingly calculated. Then, the results are compared with the proposed analytical models and the measured experimental values, and discussed in detail.

Constitutive property behavior of an ultra-high-performance concrete with and without steel fibers

  • Williams, E.M.;Graham, S.S.;Akers, S.A.;Reed, P.A.;Rushing, T.S.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.191-202
    • /
    • 2010
  • A laboratory investigation was conducted to characterize the constitutive property behavior of Cor-Tuf, an ultra-high-performance composite concrete. Mechanical property tests (hydrostatic compression, unconfined compression (UC), triaxial compression (TXC), unconfined direct pull (DP), uniaxial strain, and uniaxial-strain-load/constant-volumetric-strain tests) were performed on specimens prepared from concrete mixtures with and without steel fibers. From the UC and TXC test results, compression failure surfaces were developed for both sets of specimens. Both failure surfaces exhibited a continuous increase in maximum principal stress difference with increasing confining stress. The DP tests results determined the unconfined tensile strengths of the two mixtures. The tensile strength of each mixture was less than the generally assumed tensile strength for conventional strength concrete, which is 10 percent of the unconfined compressive strength. Both concretes behaved similarly, but Cor-Tuf with steel fibers exhibited slightly greater strength with increased confining pressure, and Cor-Tuf without steel fibers displayed slightly greater compressibility.

Performance evaluation of the lightweight concrete tapered piles under hammer impacts

  • Tavasoli, Omid;Ghazavi, Mahmoud
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.615-626
    • /
    • 2019
  • Lightweight concrete (LWC) provides an attractive alternative to conventional piles by improving the durability of deep foundations. In this paper, the drivability of cylindrical and tapered piles made of lightweight and common concrete (CC) under hammer impacts was investigated by performing field tests and numerical analysis. The different concrete mixtures were considered to compare the mechanical properties of light aggregate which replaced instead of the natural aggregate. Driving tests were also conducted on different piles to determine how the pile material and geometric configurations affect driving performance. The results indicated that the tapering shape has an appropriate effect on the drivability of piles and although lower driving stresses are induced in the LWC tapered pile, their final penetration rate was more than that of CC cylindrical pile under hammer impact. Also by analyzing wave propagation in the different rods, it was concluded that the LWC piles with greater velocity than others had better performance in pile driving phenomena. Furthermore, LWC piles can be driven more easily into the ground than cylindrical concrete piles sometimes up to 50% lower hammer impacts and results in important energy saving.

Proposal for Compressive Strength Development Model of Lightweight Aggregate Concrete Using Expanded Bottom Ash and Dredged Soil Granules (바텀애시 및 준설토 기반 인공경량골재 콘크리트의 압축강도 발현 모델 제시)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.7
    • /
    • pp.19-26
    • /
    • 2018
  • This study tested 25 lightweight aggregate concrete (LWAC) mixtures using the expanded bottom ash and dredged soil granules to examine the compressive strength gain of such concrete with different ages. The test parameters investigated were water-to-cement ratios and the natural sand content for the replacement of lightweight fine aggregate. The compressive strength gain rate in the basic equation specified in fib model code was experimentally determined in each mixture and then empirically formulated as a function of the water-to-cement ratio and oven-dried density of concrete. When compared with 28-day compressive strength, the tested LWAC mixtures exhibited relatively low gain ratios (0.49~0.82) at an age of 3 days whereas the gain ratios (1.16~1.41) at 91 days were higher than that (1.05~1.15) of the conventional normal-weight concrete. Thus, the fib model equations tend to overestimate the early strength gain of LWAC but underestimate the long-term strength gain. The proposed equations are in good agreement with the measured compressive strength development of LWAC at different ages, indicating that the mean and standard deviation of the normalized root mean square errors determined in each mixture are 0.101 and 0.053, respectively.

An experimental investigation on the mechanical properties of steel fiber reinforced geopolymer concrete

  • Murali, Kallempudi;Meena, T.
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.499-505
    • /
    • 2021
  • Geopolymer binders fascinate the attention of researchers as a replacement to cement binder in conventional concrete. One-ton production of cement releases one ton of carbon-dioxide in the atmosphere. In the replacement of cement by geopolymer material, there are two advantages: one is the reduction of CO2 in the atmosphere, second is the utilization of Fly ash and Ground granulated blast furnace slag (GGBFS) are by-products from coal and steel industries. This paper focuses on the mechanical properties of steel fiber reinforced geopolymer concrete. The framework considered in this research work is geopolymer source (Fly ash, GGBFS and crimped steel fibre) and alkaline activator which consists of NaOH and Na2SiO3 of molarity 8M. Here the Na2SiO3 / NaOH ratio was taken as 2.5. The variables considered in this experimental work include Binder content (360,420 and 450 kg/m3), the proportion of Fly ash and GGBS (70-30, 60-40 and 50-50) for three different grades of Geopolymer concrete (GPC) GPC 20, GPC 40 and GPC 60. The percentage of crimped steel fibres was varied as 0.1%, 0.2%, 0.3%, 0.4% and 0.5%. Generally, the inclusion of steel fibres increases the flexural and split tensile strength of Geopolymer concrete. The optimum dosage of steel fibres was found to be 0.4% (by volume fraction).

A Fundamental Study for the Behavior of Lightweight Aggregate Concrete Slab Reinforced with GFRP Bar (GFRP bar를 휨보강근으로 사용한 경량골재콘크리트 슬래브의 거동에 관한 기초적 연구)

  • Jeon, Sang Hun;Shon, Byung Lak;Kim, Chung Ho;Jang, Heui Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.99-108
    • /
    • 2012
  • In this paper, to intend anticorrosive effect and weight reduction of conventional reinforced concrete slab, lightweight concrete slab reinforced with glass fiber reinforced polymer(GFRP) bar was considered and some basic behaviour of the slab were investigated. Measurement of splitting tensile strength and fracture energy of the concrete, a number of flexural experiment of the slab, numerical analysis using nonlinear finite element analysis, and comparison of the experimental results to the numerical analysis, were conducted. As a result, even the weight of the lightweight concrete slab could be reduced by about 28% than the normal concrete slab, failure load of the lightweight concrete slab was 36% smaller than the normal concrete slab. Such a thing can be attributed to the lower axial stiffness and lower bond strength of GFRP bar. In the numerical analysis, to consider decreasing property of bond strength of the lightweight concrete, interface element was used between the concrete and the GFRP bar elements and this method was shown to be a better way for the numerical analysis to approach the experimental results.

Short term bond shear stress and cracking control of reinforced self-compacting concrete one way slabs under flexural loading

  • Aslani, Farhad;Nejadi, Shami;Samali, Bijan
    • Computers and Concrete
    • /
    • v.13 no.6
    • /
    • pp.709-737
    • /
    • 2014
  • Fibre-reinforced self-compacting concrete (FRSCC) is a high-performance building material that combines positive aspects of fresh properties of self-compacting concrete (SCC) with improved characteristics of hardened concrete as a result of fibre addition. To produce SCC, either the constituent materials or the corresponding mix proportions may notably differ from the conventional concrete (CC). These modifications besides enhance the concrete fresh properties affect the hardened properties of the concrete. Therefore, it is vital to investigate whether all the assumed hypotheses about CC are also valid for SCC structures. In the present paper, the experimental results of short-term flexural load tests on eight reinforced SCC and FRSCC specimens slabs are presented. For this purpose, four SCC mixes - two plain SCC, two steel, two polypropylene, and two hybrid FRSCC slab specimens - are considered in the test program. The tests are conducted to study the development of SCC and FRSCC flexural cracking under increasing short-term loads from first cracking through to flexural failure. The achieved experimental results give the SCC and FRSCC slabs bond shear stresses for short-term crack width calculation. Therefore, the adopted bond shear stress for each mix slab is presented in this study. Crack width, crack patterns, deflections at mid-span, steel strains and concrete surface strains at the steel levels were recorded at each load increment in the post-cracking range.

Influence of silpozz and rice husk ash on enhancement of concrete strength

  • Panda, K.C.;Prusty, S.D.
    • Advances in concrete construction
    • /
    • v.3 no.3
    • /
    • pp.203-221
    • /
    • 2015
  • This paper presents the results of a study undertaken to investigate the enhancement of concrete strength using Silpozz and Rice Husk Ash (RHA). The total percentage of supplementary cementitious material (SCM) substituted in this study was 20%. Six different concrete mixes were prepared such as without replacement of cement with silpozz and RHA (0% silpozz and 0% RHA) is treated as conventional concrete, whereas in other five concrete mixes cement was replaced by 20% of silpozz and RHA as (0% silpozz and 20% RHA), (5% silpozz and 15% RHA), (10% silpozz and 10% RHA), (15% silpozz and 5% RHA) and (20% silpozz and 0% RHA) with decreasing water-binder (w/b) ratio i.e. 0.375, 0.325 and 0.275 and increasing super plasticiser dose. New generation polycarboxylate base water reducing admixture i.e., Cera Hyperplast XR-W40 was used in this study. The results of this research indicate that as w/b decreases, super plasticiser dose need to be increased so as to increase the workability of concrete. The effects of replacing cement by silpozz and RHA on the compressive strength, split tensile strength and flexural strength were evaluated. The concrete mixture with different combination of silpozz and RHA gives higher strength as compared to control specimen for all w/b ratios and also observed that the early age strength of concrete is more as compared to the later age strength. It is also observed that the strength enhancement of concrete mixture prepared with the combination of cement, silpozz and RHA is higher as compared to the concrete mixture prepared with cement and silpozz or cement and RHA.

Shear Deformation of Steel Fiber-Reinforced Prestressed Concrete Beams

  • Hwang, Jin-Ha;Lee, Deuck Hang;Ju, Hyunjin;Kim, Kang Su;Kang, Thomas H.K.;Pan, Zuanfeng
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.53-63
    • /
    • 2016
  • Steel fiber-reinforced prestressed concrete (SFRPSC) members typically have high shear strength and deformation capability, compared to conventional prestressed concrete (PSC) members, due to the resistance provided by steel fibers at the crack surface after the onset of diagonal cracking. In this study, shear tests were conducted on the SFRPSC members with the test variables of concrete compressive strength, fiber volume fraction, and prestressing force level. Their localized behavior around the critical shear cracks was measured by a non-contact image-based displacement measurement system, and thus their shear deformation was thoroughly investigated. The tested SFRPSC members showed higher shear strengths as the concrete compressive strength or the level of prestress increased, and their stiffnesses did not change significantly, even after diagonal cracking due to the resistance of steel fibers. As the level of prestress increased, the shear deformation was contributed by the crack opening displacement more than the slip displacement. In addition, the local displacements around the shear crack progressed toward directions that differ from those expected by the principal strain angles that can be typically obtained from the average strains of the concrete element. Thus, this localized deformation characteristics around the shear cracks should be considered when measuring the local deformation of concrete elements near discrete cracks or when calculating the local stresses.