• Title/Summary/Keyword: conventional concrete

Search Result 1,216, Processing Time 0.028 seconds

Low strength concrete members externally confined with FRP sheets

  • Ilki, Alper;Kumbasar, Nahit;Koc, Volkan
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.167-194
    • /
    • 2004
  • In this paper axial loading tests on low strength concrete members, which were confined with various thickness of carbon fiber reinforced polymer (CFRP) composite sheets are described. Totally 46 specimens with circular, square and rectangular cross-sections with unconfined concrete compressive strengths between 6 and 10 MPa were included in the test program. During the tests, a photogrammetrical deformation measurement technique was also used, as well as conventional measurement techniques. The contribution of external confinement with CFRP composite sheets to the compressive behavior of the specimens with low strength concrete is evaluated quantitatively, in terms of strength, longitudinal and lateral deformability and energy dissipation. The effects of width/depth ratios and the corner radius of the specimens with rectangular cross-section on the axial behavior were also examined. It was seen that the effectiveness of the external confinement with CFRP composite sheets is much more pronounced, when the unconfined concrete compressive strength is relatively lower. It was also found that the available analytical expressions proposed for normal or high strength concrete confined by CFRP sheets could not predict the strength and deformability of CFRP confined low strength concrete accurately. New expressions are proposed for the compressive strength and the ultimate axial strain of CFRP confined low strength concrete.

IMPACT ANALYSES AND TESTS OF CONCRETE OVERPACKS OF SPENT NUCLEAR FUEL STORAGE CASKS

  • Lee, Sanghoon;Cho, Sang-Soon;Jeon, Je-Eon;Kim, Ki-Young;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.73-80
    • /
    • 2014
  • A concrete cask is an option for spent nuclear fuel interim storage. A concrete cask usually consists of a metallic canister which confines the spent nuclear fuel assemblies and a concrete overpack. When the overpack undergoes a missile impact, which might be caused by a tornado or an aircraft crash, it should sustain an acceptable level of structural integrity so that its radiation shielding capability and the retrievability of the canister are maintained. A missile impact against a concrete overpack produces two damage modes, local damage and global damage. In conventional approaches [1], those two damage modes are decoupled and evaluated separately. The local damage of concrete is usually evaluated by empirical formulas, while the global damage is evaluated by finite element analysis. However, this decoupled approach may lead to a very conservative estimation of both damages. In this research, finite element analysis with material failure models and element erosion is applied to the evaluation of local and global damage of concrete overpacks under high speed missile impacts. Two types of concrete overpacks with different configurations are considered. The numerical simulation results are compared with test results, and it is shown that the finite element analysis predicts both local and global damage qualitatively well, but the quantitative accuracy of the results are highly dependent on the fine-tuning of material and failure parameters.

Effect of rubber particles on properties and frost resistance of self-compacting concrete

  • Miao Liu;Jianhua Xiao;En Yang;Lijuan Su
    • Advances in concrete construction
    • /
    • v.16 no.5
    • /
    • pp.269-276
    • /
    • 2023
  • In order to study the effect of rubber particle size and admixture on the frost resistance of self-compacting concrete, three self-compacting concrete specimens with equal volume replacement of fine aggregate by rubber particles of different particle sizes were prepared, while conventional self-compacting concrete was made as a comparison specimen. The degradation law of rubber aggregate self-compacted concrete under freeze-thaw cycles was investigated by fast-freezing method test. The results show that the rubber aggregate has some influence on the mechanical properties and freeze-thaw durability of the self-compacting concrete. With the increase of rubber aggregate, the compressive strength of self-compacting concrete gradually decreases, and the smaller the rubber aggregate particle size is, the smaller the effect on the compressive strength of the matrix; rubber aggregate can improve the frost resistance of self-compacting concrete, and the smaller the rubber particle size is, the more obvious the effect on the improvement of the frost resistance of the matrix under the same dosage. Through the research of this paper, it is recommended to use 60~80 purpose rubber aggregate and the substitution rate of 10% is chosen as the best effect.

Shear Strength Evaluation of Steel Fiber Reinforced Concrete Coupling Beams with Conventional Reinforcements Details (일반 철근 배근 상세를 갖는 강섬유 보강 콘크리트 연결보의 전단강도 평가)

  • Seong-Hwi Song;Dong-Hee Son;Baek-Il Bae;Chang-Sik Choi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.37-45
    • /
    • 2023
  • The purpose of this study is to prevent diagonal tension failure of existing conventional coupling beams, increase the shear strength of conventional coupling beams, and quantitatively evaluate the increase. Steel fibers can improve shear strength and partially change the failure mechanism, but this is the result of research on general RC beams and columns, and research on the shear strength enhancement of conventional coupling beams for steel fiber reinforced concrete is still lacking. Therefore, in order to confirm the increased shear strength caused by steel fiber and the resulting change in failure mechanism, three specimens were fabricated with the steel fiber volume fraction as a variable (0%, 1%, 2%) and repeated loading experiments were performed. As a result, the shear strength of the specimens reinforced with steel fibers (1%, 2%) increased as the shear resistance contribution of concrete increased after the maximum strength was developed compared to the specimens without it (0%).

Effect of Emulsified Waste Oil on the Engineering Properties and Autogenous Shrinkage of the High Strength Concrete (유화처리된 폐식용유가 고강도 콘크리트의 공학적 특성 및 자기수축에 미치는 영향)

  • Han, Min-Cheol;Kim, Tae-Cheong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.62-69
    • /
    • 2012
  • This study investigates the engineering properties of the high strength concrete depending on dosages and types of shrinkage reduction agent. Test results showed that for the properties of fresh concrete, the addition of the conventional shrinkage reduction agent (SR) of 0.25% decreased slump flow up to 40% as compared with control concrete, whereas the addition of the emulsified waste cooking oil (EWCO) decreased slump flow of only 5% to 10%. Other properties of fresh concrete with the agents, namely air content, unit weight and setting time, were similar to the results of the control concrete. For the properties of hardened concrete, the compressive strength of the concrete with SR decreased at both early and later stage. However, the compressive strength of the concrete with EWCO was similar to the control concrete at early age, but decreased at later stage (up to 10% reduction at 28 days). For the effect of the agents on autogenous shrinkage of the concretes, the addition of EWCO decreased up to 33%, whereas that of SR decreased up to 29%. Hence, it can be said that the addition of EWCO in high strength concrete has an effect on reducing the autogenous shrinkage as compared with a conventional agent and only slight influence on the slump flow and air content of concrete. By taking all aspects of using EWCO, it is concluded that the optimum content of EWCO will be in the range of between 0.5% and 0.75%.

  • PDF

A Study on Field Change Case of Tunnel Concrete Lining Designs Using GLI(Ground Lining Interaction) Model (GLI(Ground-Lining Interaction)모델을 이용한 터널 콘크리트라이닝의 현장 설계변경 사례에 대한 연구)

  • Chang, Seok-Bue;Lee, Soo-Yul;Suh, Young-Ho;Yun, Ki-Hang;Park, Yeon-Jun;Kim, Su-Man
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.58-64
    • /
    • 2010
  • GLI model was verified to consider the interaction between a ground and a tunnel lining and to rationally reduce the ground load acting on the secondary lining(concrete lining) of a tunnel. In this study, the economy and the construction condition of tunnel concrete linings designed by a conventional frame model at Lot O of OO line were highly enhanced through a field design change using GLI model. For a few safe considerations, not only about 50% saving of reinforcing steel could reduce the material cost but also the wide space between bars could make it easy to pour concrete mix without voids. There was large saving effect of reinforcing steel for poor ground conditions because Terzaghi's load used in the conventional frame model produces too much high loads for those conditions.

Surface Crack Evaluation Method in Concrete Structures (콘크리트 구조물의 표면 균열 평가 기법)

  • Lee, Bang-Yeon;Yi, Seong-Tae;Kim, Jin-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.173-182
    • /
    • 2007
  • Cracks in concrete structures should be measured to periodically assess potential problems in durability and serviceability. Conventional crack measurement systems depend on visual inspections and manual measurements of the crack features such as width, length, and direction using microscope and crack gage. However, conventional methods take long time as well as manpower, and lack quantitative objectivity resulted by inspectors. In this study, an evaluation technique for concrete surface cracks is developed using image processing and artificial neural network. Developed technique consists of three major parts: (1) crack detection (2) crack analysis and (3) pattern recognition. To examine validity of the technique developed in this study, crack analyzing tests were performed on the images obtained from various types of concrete surface cracks. The test results revealed that the system is highly effective in automatically analyzing concrete surface cracks in terms of features and patterns of cracks.

Fatigue Resistance of Fiber-Reinforced Asphalt Concrete in Flexible Pavement (연성포장용 섬유보강 아스팔트 콘크리트의 피로저항성)

  • Kim, Nak-Seok;Choo, Sang-Hyuk;Lee, Suck-Hong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.3 s.6
    • /
    • pp.79-88
    • /
    • 2002
  • The main purpose of this paper is to evaluate the possibility of improvement in fatigue resistance of asphalt concrete mixture using the industrial waste material of K fiber. In this research, as an experimental equipment, the MTS with Closed-Loop Servohydraulic System was used and it was designed according to the U.S. standard testing procedure of ASTM D 4123. According to the test results, the optimum content of fiber with the length of 8mm was about 0.2 percent of total mixture weight. The optimum asphalt content for the fiber-reinforced asphalt concrete was about 5.5 percent of total mixture weight. Fatigue resistance of fiber-reinforced asphalt concrete was noticeable compared to the conventional dense-graded 20 asphalt concrete. In addition, the resilient moduli of fiber-reinforced asphalt mixture were $1.15{\sim}1.18$ times higher than those of conventional asphalt concrete.

A Study on the Verification Test for a Deformable Rod Sensor (변형봉 센서 검증실험에 관한 연구)

  • 김상일;최용규;이민희
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.35-47
    • /
    • 2003
  • In the conventional axial load transfer analysis for composite piles (i.e., steel pipe pile filled with concrete), it was assumed that the concrete's strain is same as the measured steel's strain and the elastic modulus of the steel and the concrete calculated by formular as prescribed by specification is used in calculation of pile axial load. But, the pile axial load calculated by conventional method had some difference with the actual pile load. So, the behavior of a composite pile could not be analyzed exactly. Thus, the necessity to measure the strain for each pile components was proposed. In this study, the verification test for DRS (Deformable Rod Sensor) developed to measure the strain of each pile component (i.e., the steel and the concrete) was performed. In the calculation of pile axial load using the DRS, elastic modulus of concrete could be determined by the uniaxial compression test for the concrete cylinder samples made in the test site and an average tangential modulus in the stress range of (0.2∼0.6)f$_ck$ was taken.

Bending characteristics of Prestressed High Strength Concrete (PHC) spun pile measured using distributed optical fibre strain sensor

  • Mohamad, Hisham;Tee, Bun Pin;Chong, Mun Fai;Lee, Siew Cheng;Chaiyasarn, Krisada
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.267-278
    • /
    • 2022
  • Pre-stressed concrete circular spun piles are widely used in various infrastructure projects around the world and offer an economical deep foundation system with consistent and superior quality compared to cast in-situ and other concrete piles. Conventional methods for measuring the lateral response of piles have been limited to conventional instrumentation, such as electrical based gauges and pressure transducers. The problem with existing technology is that the sensors are not able to assist in recording the lateral stiffness changes of the pile which varies along the length depending on the distribution of the flexural moments and appearance of tensile cracks. This paper describes a full-scale bending test of a 1-m diameter spun pile of 30 m long and instrumented using advanced fibre optic distributed sensor, known as Brillouin Optical Time Domain Analysis (BOTDA). Optical fibre sensors were embedded inside the concrete during the manufacturing stage and attached on the concrete surface in order to measure the pile's full-length flexural behaviour under the prescribed serviceability and ultimate limit state. The relationship between moments-deflections and bending moments-curvatures are examined with respect to the lateral forces. Tensile cracks were measured and compared with the peak strains observed from BOTDA data which corroborated very well. By analysing the moment-curvature response of the pile, the structure can be represented by two bending stiffness parameters, namely the pre-yield (EI) and post-yield (EIcr), where the cracks reduce the stiffness property by 89%. The pile deflection profile can be attained from optical fibre data through closed-form solutions, which generally matched with the displacements recorded by Linear Voltage Displacement Transducers (LVDTs).