• Title/Summary/Keyword: conventional chlorella

Search Result 11, Processing Time 0.032 seconds

The Tissue Distribution of Lutein in Laying Hens Fed Lutein Fortified Chlorella and Production of Chicken Eggs Enriched with Lutein

  • An, Byoung-Ki;Jeon, Jin-Young;Kang, Chang-Won;Kim, Jin-Man;Hwang, Jae-Kwan
    • Food Science of Animal Resources
    • /
    • v.34 no.2
    • /
    • pp.172-177
    • /
    • 2014
  • Two experiments were conducted to investigate the dietary effects of conventional or lutein fortified chlorella on lutein absorptions, the tissue distributions and the changes in lutein content of eggs in laying hens. In Exp 1, a total of one hundred and fifty, 70 wk-old Hy-Line brown layers were divided into three groups with five replicates and fed with each experiment diet (control diet, diet with 1% conventional chlorella or lutein fortified chlorella) for 2 wk, respectively. The egg production in groups fed diets containing both chlorella powders were higher than that of the control group (p<0.01). With chlorella supplementations, the yolk color significantly increased, although there were no significant differences in the eggshell qualities. The lutein contents of serum, liver and growing oocytes were greatly increased by feeding conventional or lutein fortified chlorella (p<0.01). In Exp. 2, a total of ninety 60 wk-old Hy-Line brown layers were assigned into three groups with three replicates per group (10 birds per replicate). The birds were fed with one of three experimental diets (0, 0.1 or 0.2% lutein fortified chlorella) for 2 wk, respectively. The egg production was not affected by dietary treatments. The egg weight in the group fed with diet containing 0.2% of lutein fortified chlorella was higher than that of the control (p<0.05). As the dietary chlorella levels increased, the daily egg mass linearly increased, although not significantly. The yolk colors in groups fed diets containing lutein fortified chlorella were dramatically increased as compared to the control (p<0.001). The lutein in chicken eggs significantly increased when fed with 0.2% of lutein fortified chlorella (p<0.01). These results suggested that the dietary lutein derived from chlorella was readily absorbed into the serum and absorbed by the liver with growing oocyte for commercial laying hens. Particularly, the lutein fortified chlorella was a valuable natural source for the production of lutein enriched chicken eggs.

Effect of Chlorella Addition on the Quality of Processed Cheese (Chlorella첨가가 가공치즈 품질에 미치는 영향)

  • Jeon, Jeong-Ki
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.3
    • /
    • pp.373-377
    • /
    • 2006
  • The effect of chlorella addition on the quality characteristics of processed cheese was investigated. Chlorella processed cheese was prepared in the different ratio of chlorella (0.5% (w/w) and 1.0% (w/w)). Chlorella processed cheese was stored at $10{\pm}1^{\circ}C$ and evaluated for the quality characteristics including general composition, pH, the number of microorganisms, oiling off, meltability, rheological properties, color, and sensory evaluation. Contents of moisture, protein, fat, fat in dry matter, and pH values were not different from those of control cheese. Microorganisms were not detected. The degree of oiling off showed no significant difference, but meltability decreased significantly (p<0.05). Hardness and springiness gradually increased significantly (p<0.05), while cohesiveness gradually decreased significantly (p<0.05). The L (lightness) values and the a (redness) values decreased with increasing chlorella contents, but the b (yellowness) values increased with increasing chlorella contents, so color expressed yellowish green. Compared to control cheese made by conventional way, QDA scores of color and mouthfeel of chlorella processed cheese were significantly higher (p<0.05) and the most favorite quality characteristics were shown in the processed cheese with 0.5% (w/w) chlorella (CPC1). These results suggested that health-oriented chlorella processed cheese would be made by the addition of the chlorella.

Removal of Nutrients and Heavy Metals from Swine Wastewater using Chlorella vulgaris (Chlorella vulgaris를 이용한 양돈폐수 내 영양염류 및 중금속 제거)

  • Oh, Eun-Ji;Hwang, In-Sung;Yoo, Jin;Chung, Keun-Yook
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1059-1072
    • /
    • 2018
  • Bioremediation has been recognized as a suitable alternative to conventional methods of removing contaminants, and it uses fungi, bacteria and microalgae. In contrast to other organisms, microalgae are unique in that they have the ability to perform photosynthesis like plants and to utilize organic/inorganic carbon substrates, in a process called phytoremediation. Microalgae can populate a reaction site rapidly and enhance the bioremediation efficiency. In this study, Chlorella vulgaris was used to evaluate the removal potentials of the nutrients (N and P) and heavy metals (Cu and Zn) from swine wastewater. The optimum growth conditions for Chlorella vulgaris and the removal potentials of N, P, Cu, and Zn from synthetic wastewater using Chlorella vulgaris were investigated. Based on the results, the applicability of this microalga to on-site wastewater treatment was examined. Optimal growth conditions for Chlorella vulgaris were established to be $28^{\circ}C$, a pH of 7, and light and dark cycles of 14:10 h. As the concentrations of the nutrients were increased, the efficiencies of N and P removal efficiencies by Chlorella vulgaris were decreased in the single and binary mixed treatments of the nutrients, respectively. Further, the efficiencies of Cu and Zn removal also decreased as the heavy metals concentrations added were increased, both in the single and binary mixed treatments. In addition, the efficiency of Cu removal was higher than that of Zn removal. Our results indicate that Chlorella vulgaris could be used in treatment plants for the removal of nutrients and heavy metals from swine wastewater.

Extraction of Lipids from Microalgae Using Polar and Nonpolar Bi-solvent Systems (이성분 용매 추출에 의한 미세조류로 부터의 바이오디젤용 지질 분리)

  • Hong, Yeon-Ki;Kim, Jeong-Bae;Ng, K.Y. Simon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.66-71
    • /
    • 2011
  • Various single solvents were tested to find the effective solvent for the extraction of algae oil from wet-form Chlorella minutissima. In the case of single solvents, their extractabilities for algae oil were increased with their polarity because the water in wet algae cell is to form a solvent shell around the lipids. Based on these results, the wet-form algae samples were treated with a polar alcohol solvent and then a nonpolar solvent was added in algae residue. In the algae oil extraction by ethanol/n-hexane, total lipid contents were 40-50% and composition of triglyceride in extracted oil was 46.50%. Considering solvent toxicity of conventional solvent mixture such as chloroform and methanol for algae oil extraction, the ethanol/n-hexane system was identified as the effective one for the oil extraction from wet-form Chlorella minutissima.

Enhanced Lipid Production of Chlorella sp. HS2 Using Serial Optimization and Heat Shock

  • Kim, Hee Su;Kim, Minsik;Park, Won-Kun;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.136-145
    • /
    • 2020
  • Chlorella sp. HS2, which previously showed excellent performance in phototrophic cultivation and has tolerance for wide ranges of salinity, pH, and temperature, was cultivated heterotrophically. However, this conventional medium has been newly optimized based on a composition analysis using elemental analysis and ICP-OES. In addition, in order to maintain a favorable dissolved oxygen level, stepwise elevation of revolutions per minute was adopted. These optimizations led to 40 and 13% increases in the biomass and lipid productivity, respectively (7.0 and 2.25 g l-1d-1 each). To increase the lipid content even further, 12 h heat shock at 50℃ was applied and this enhanced the biomass and lipid productivity up to 4 and 17% respectively (7.3 and 2.64 g l-1d-1, each) relative to the optimized conditions above, and the values were 17 and 14% higher than ordinary lipid-accumulating N-limitation (6.2 and 2.31 g l-1d-1). On this basis, heat shock was successfully adopted in novel Chlorella sp. HS2 cultivation as a lipid inducer for the first time. Considering its fast and cost-effective characteristics, heat shock will enhance the overall microalgal biofuel production process.

Treatment of Acid Mine Drainage using Eggshells and Microalgae (폐난각과 미세조류를 이용한 산성광산배수처리)

  • Choi, Hee-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.647-652
    • /
    • 2014
  • The aim of this study was to investigate the heavy metal removal and biomass productivity in the Acid Mine Drainage (AMD) using eggshell and microalgae. The experiment was operated 6 days in the eggshell and microalgae hybrid system, and using eggshell powder and microalgae as Chlorella vulgaris. The obtained result indicated that the biomass productivity of 2.82 g/L/d from 1.12 g/L initial concentration in 6 days was reached with light transmittance of 97% at a 305 mm depth in the optical panel photobioreactor (OPPBR). The total removal efficiency of Fe, Cu, Zn, Mn and Cd was found to be 98.92%, 99.91%, 98.78%, 88.99% and 98.00% in the AMD using eggshell and Chlorella vulgaris hybrid system, respectively. Additionally, there were significant relationships between biomass and concentration of each heavy metal ($R^2$ = 0.8771, 0.8643, 0.8669, 0.9134 and 0.6277 for Fe, Cu, Zn, Mn and Cd). These results indicated that the eggshell and microalgae hybrid system was highly effective for heavy metal removal when compared to the conventional biological process in the AMD. Therefore, the eggshell and microalgae hybrid system was effective for heavy metal removal and biomass productivity and can be applied to treat AMD in treatment plant.

Fatty acid composition and docosahexaenoic acid (DHA) content of the heterotrophic dinoflagellate Oxyrrhis marina fed on dried yeast: compared with algal prey

  • Yoon, Eun Young;Park, Jaeyeon;Jeong, Hae Jin;Rho, Jung-Rae
    • ALGAE
    • /
    • v.32 no.1
    • /
    • pp.67-74
    • /
    • 2017
  • The heterotrophic dinoflagellate Oxyrrhis marina is known to produce high levels of docosahexaenoic acid (DHA) when fed on diverse algal prey. However, large-scale culturing of algal prey species is not easy and requires a large amount of budget, and thus more easily cultivable and low-cost prey is required. Dried yeast was selected as a strong candidate for an alternative prey in our preliminary tests. Thus, we explored the fatty acid composition and DHA production of O. marina fed on dried yeast and compared these results to those of O. marina fed on two algal prey species: the phototrophic dinoflagellate Amphidinium carterae and chlorophyte Chlorella sp. powder. O. marina fed on dried yeast, which does not contain DHA, produced the same high level of DHA as those fed on DHA-containing A. carterae. This indicates that O. marina is likely to produce DHA by itself regardless of prey items. Furthermore, the DHA content (and portion of total fatty acid methyl esters) of O. marina satiated with dried yeast, 52.40 pg per cell(and 25.9%), was considerably greater than that of O. marina fed on A. carterae (26.91 pg per cell; 15.7%) or powder of Chlorella sp. powder (21.24 pg per cell; 16.7%). The cost of dried yeast (approximately 10 US dollars for 1 kg dried yeast) was much lower than that of obtaining the algal prey (approximately 160 US dollars for 1 kg A. carterae). Therefore, compared to conventional algal prey, dried yeast is a more easily obtainable and lower-cost prey for use in the production of DHA by O. marina.

Nutritional and Organoleptic Evaluations of the By-products from Chlorella vulgaris after Lipid Extraction (Chlorella vulgaris의 지질 추출 후 부산물의 영양학적 및 관능적 평가)

  • Oh, Sung-Ho;Choi, Woon-Yong;Seo, Yong-Chang;Kim, Ga-Bin;Lee, Shin-Young;Jeong, Kyung-Hwan;Kang, Do-Hyung;Lee, Hyeon-Yong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.6
    • /
    • pp.920-926
    • /
    • 2010
  • Marine alga, Chlorella vulgaris, was extracted by chloroform-methanol (2:1, v/v) solvents for lipid extraction at $35^{\circ}C$ for five hours (HCM-35) and its process was compared with conventional lipid extraction condition such as chloroform-methanol (2:1, v/v) at $65^{\circ}C$ for one hour (CM-65). This low temperature extraction process showed that 80% of total lipid was extracted and its residues contained relatively unchanged amounts of intact proteins and other minerals as well as amino acid profiles. Interestingly enough, the weight fraction of carbohydrate in the residues slightly increased due to less denaturation at low process temperature. The biological activities of the residues such as cytotoxicity and immune cell growth activation were not much changed after being extracted. The sensory evaluation were found to be very favorable for being used as a food additive and/or food supplement. This result could also help to maintain the economic feasibility of utilizing marine resources in food and other relevant industries.

Size Estimation of Microalgal System for Nitrogen Removal (미세조류를 이용한 질소제거 장치의 크기)

  • 김한욱;이우성;이철균
    • KSBB Journal
    • /
    • v.19 no.3
    • /
    • pp.236-240
    • /
    • 2004
  • Korean wastewaters have higher nitrogen concentrations than typical wastewaters of other countries. Most treatment processes such as activated sludge processes will need to supplement extra carbon sources for a complete removal of remaining nitrogen after the initial wastewater treatment, Because of these difficult matters, we have searched wastewater treatment methods that require no additional carbon sources. Wastewater treatment by microalgae in photobioreactors, using a green eukaryotic microalgae, Chlorella kessleri, showed a promising results and thus was selected to study further. This system is not intended to replace the conventional system but is to assist the existing biological treatment systems as a supplemental nitrogen removal process. Thus the secondary treated livestock wastewater was tested. Column type photobioreactors developed in our laboratory were used. When aerated with 5% CO$_2$ balanced with air at 1 vvm and illuminated at 100 ${\mu}$mol/㎡/s under 25$^{\circ}C$ and PH 7-8 by CO$_2$ buffering effect, the maximum nitrogen removal rate was 2.6 mg/L/hr. The results confirmed a possibility of microalgal wastewater treatment system as a secondary system to remove extra nitrogen sources. Based on these experimental results, the size of the optimal microalgal wastewater system was calculated. For the wastewater whose initial nitrogen concentration of 150 mg/L, the optimal batch system was found to be a 2 stage system with a combined retention time of 4.6 day. From the continuous experiments, nitrogen removal rates were examined under different dilution rates and 2 stage system was also found to be the optimal system. The combined retention time for the continuous system was 3.5 days. It is expected that conventional biological wastewater treatment systems followed by microalgal systems would reliably decrease the nitrogen concentration below the government criteria even for the livestock wastewater with low C/N ratio.

Improvement of Total Chrolophill Analytical Methods for the Chlorella Products with Extended Products Types (신 제형 클로렐라제품의 총 엽록소 시혐법 개선)

  • Kim, Yoo-Kyung;Lee, Eun-Suk;Han, Jae-Gab;No, Gi-Me;Lim, Dong-Gil;Jung, Ja-Young;Park, Young-Sig
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.1
    • /
    • pp.70-75
    • /
    • 2011
  • A new and improved analytical method involving alkaline pyridine extraction was proposed to quantity chlorophyll contents in syrup and candy type chlorella products. The performance of analytical method was compared with the conventional Korea food standard method which involves acetone extraction. The application of sonication chlorophyll extraction form alkaline pyridine sample was also explored. The analytical procedure was validated by evaluating accuracy, precision and reproducibility. For liquid samples, the pyridine extraction method showed higher accuracy and precision compared to acetone extraction method. The CV values of pyridine extract method and the acetone extraction method were 18.82 and 40.0, and the accuracy to theoretical values were 106.3% and 78.1%, respectively. When sonication extraction method was applied to the pyridine extraction, the precision was improved as indicated by reduced CV values from 18.82 to 11.36. The improved performance of pyridine-sonication extraction was also validated by recovery test of chlorophyll that was previously spiked into the sample matrix. For solid matrix, the pyridine extraction method showed better performance in analysis of chlorophyll in solid food matrix (CV = 7.05) compared to conventional acetone extraction method (CV = 30.0). However, the accuracy to theoretical values of pyridine and acetone extraction methods only showed only 62.7% an 40%, respectively. The relatively low accuracy of pyridine extraction method (62.7%) was improved to 99.4% by applying additional sonication extraction method. The improved performance of applying additional sonication extraction was validated by standard deviation, CV values and accuracy to theoretical values.