• Title/Summary/Keyword: convective system

Search Result 340, Processing Time 0.027 seconds

Numerical Analysis on Changes in Flowrate of Draft Water and Power by Changing Design Parameters of a Long-Distance Water Circulation (저층수 흡입식 광역 순환장치의 설계변수에 따른 배출량 및 소비동력 변화 특성에 대한 수치 해석 연구)

  • Song, Dong-Keun;Hong, Won-Seok;Kim, Young-Cheol;Park, Myong-Ha
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • A draft tube which has impeller to elevate bottom water and spread it over surface of lake water, induces convective circulation of lake water, a Long-Distance Circulation (LDC). Circulation of lake water make stratified water mixed and enhance DO (Dissolved Oxygen) of bottom water. Circulation rate of water is determined by draft rate of the tube, which is dependent on design parameters of the draft tube system, i. e. dimension of impeller and diffuser, inclined angle of impeller, impeller shape, and rotational speed. In this study, change in draft rate and power consumption of circulation equipment was investigated numerically with changing impeller dimension, angle and rotational speed. It was found that flowrate of draft water was increased as the dimensions of draft tube and impeller, and rotational speed and inclined angle of impeller increased. The power consumption was also elevated with increasing parameter values, and final selection of parameter values was made to satisfy target flowrates and power consumption.

Separation Characteristics of Oligodeoxynucleotides by High-Performance Membrane Chromatography (고성능 막 크로마토그래피에 의한 Oligodeoxynucleotides의 분리특성)

  • Kim, Jung-Il;Hong, Seung-Bum;Sun, Hyang;Row, Kyung-Ho
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.605-608
    • /
    • 2000
  • Oligodeoxynucleotides (ODNs) were separated by high-performance membrane chromatography (HPMC), a combined system of chromatography and membrane. The separation mechanism involved anion-exchange, and the stationary phase was cation CIM (Convective Interaction Media) DEAE disk (16${\times}$3 mm). Two types of mobile phase were used, buffer A (20mM Tris-HCl, pH 7.4) and buffer B (buffer A + 1M NaCl). As the amount of NaCl dissolved in buffer linearly increased, the retention time shortened, which enabled a gradient elution mode. Based on the number of theoretical plates and resolution observed, the optimum mobile phase and operating condition (Buffer A/Buffer B=50/50 - 20/80 vol%, gradient time 2 min) were experimentally determined. In this experimental condition, ODNs were separated within 2 min at a mobile phase flow rate of 6 ml/min.

  • PDF

Estimation of Heat Transfer Characteristics for a Solar Chemical Reactor (고온 태양열 화학반응기 열전달 성능 평가)

  • Kang, Kyung-Mun;Lee, Ju-Han;Cho, Hyun-Suk;Seo, Tae-Beom
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2221-2226
    • /
    • 2008
  • The objective of this paper is to describe the experimental and numerical investigation of the analysis of the heat transfer in a solar chemical reactor. These are compared about methane steam reforming process in the solar chemical reactor which was a volumetric absorber consisting of honeycomb and a multilayered catalyst supports. With this high operating temperature, convective heat loss, thermal fracture are important features for designing SCR. In order to estimate the system performance and to design the actual solar reactor with various conditions, CFD analysis was used in this study. The nickel oxide porous metal is inserted inside the solar chemical reactor to increase the conversion rate of the reforming reaction. Simulation has been carried out based on the experimental data. According to the simulation results, the optimum methane-steam mole ratio and thickness and numbers of catalyst supports were obtained.

  • PDF

Experimental Studies on Single Phase Flow and Heat Transfer in Microchannels (미세유로의 단상 유동 및 열전달에 대한 실험적 연구)

  • Kim, Byong-Joo;Kim, Geon-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.795-801
    • /
    • 2008
  • An experimental study has been performed on the single phase flow and convective heat transfer in trapezoidal microchannels. The microchannel was about $270{\mu}m$ wide, $800{\mu}m$ deep. and 7 mm long, which might ensure hydrodynamically fully-developed laminar flow at a low Reynolds number. The experiments were conducted with R1l3 and water, with the Reynolds number ranging from approximately 30 to 5000 for friction factor and 30 to 700 for the Nusselt number. Friction factors in laminar are found to be in good agreement with the predictions of existing correlation suggesting that a conventional analysis approach can be employed in predicting flow friction behavior in microchannels. However turbulent friction factors are hardly predictable by the existing correlations. The experimental results show that the Nusselt number is not a constant but increases almost linearly with the Reynolds number even the flow is fully developed (Re < 100). The dependence of the Nusslet number on the Reynolds number is contradictory to the conventional theory. At a Reynolds number greater than 100, the Nusselt number increases slowly with the Reynolds number, where thennally developing flow is responsible for the increase of the Nusselt number with the Reynolds number.

A Study on Entrance Length of Developing Transitional Steady Flows in a Square Duct (4각 덕트의 입구영역에서 천이 정상유동의 입구길이에 관한 연구)

  • Park, G.M.;Yoo, Y.T.;Koh, Y.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 1990
  • In the present study, the entrance length, velocity profiles and waveforms of developing transitional steady flows in a square duct are investigated analytically and experimentally. The systems of conservation equations for transitional steady duct flows are solved analytically by linearizing non-linear convective terms and adoption of modified eddy viscosity from empirical correlations. Analytical solutions of velocity profiles for developing transitional steady flow were obtained in the form of infinite series. The experimental study for transitional steady flow in a square duct with $40mm{\times}40mm{\times}4000mm$($width{\times}height{\times}length$) was carried out to measure velocity profiles and other parameters by using a hot-wire anemometer with data acquisition and processing system. The entrance length of developing transitional steady flows in a square duct was $L_e{\fallingdotseq}0.02{\cdot}Re,st{\cdot}D_h$, and the overshoot was occured at about 30 times of hydraulic diameter because of the effect of external velocity of boundary layer and instantaneous acceleration.

  • PDF

An Implicit Numerical Method for Two-Dimensional Tidal Computation (음해법에 의한 2차원 조류유동 계산법)

  • Sun-Young Kim;Mu-Seok Song
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.1-14
    • /
    • 1998
  • A two-dimensional numerical model for tidal currents based on the depth averaged equation is developed. The mode1 employs a rectangular grid system for its simplicity in the application of complicate coastal shore lines. To raise computing efficiency, implicit approximate factorization scheme is implemented in solving governing equations. An upwind-differencing is used to discretize convective terms, which provides a numerical dissipation automatically and suppresses any oscillations caused by nonlinear instabilities. Some numerical tests are made against the analytic solutions of a linearized shallow water equation to validate the developed numerical scheme, and comparisons of the model prediction with the analytic solution are satisfactory. As a real application, the tidal currents are computed on the Inchon area where the tidal currents are important for the design of new canal which is under construction.

  • PDF

Numerical Analysis of Heat Transfer System Using a Symmetric Flexible Vortex Generator in a Poiseuille Channel Flow (대칭 형태로 기울어진 와류 생성기를 이용한 열전달 시스템 수치 해석)

  • Kim, Jeonghyeon;Park, Sung Goon
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.1
    • /
    • pp.67-73
    • /
    • 2020
  • Flexible structures have been adopted in heat transfer systems as vortex generators. The flexible vortex generators immersed in a flow show a self-sustained oscillatory motion, which enhances fluid mixing and heat transfer. In the present study, the vortex generators in a two-dimensional channel flow are numerically investigated, and they are symmetrically mounted on the upper and lower walls with an inclination angle. The momentum interaction and heat transfer between the flexible vortex generators and the surrounding fluid are considered by using an immersed boundary method. The inclination angle is one of the important factors in determining the flapping kinematics of the flexible vortex generators. The flapping amplitude increases as the inclination angle increases, thereby enhancing fluid mixing. The heat transfer is enhanced up to 80% comparing to the baseline channel flow.

Development of Computational Methods for Viscous Flow around a Commercial Ship Using Finite-Volume Methods (유한체적법을 이용한 상선주위의 난류유동 계산에 관한 연구)

  • Wu-Joan Kim;Do-Hyun Kim;Suak-Ho Van
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.4
    • /
    • pp.19-30
    • /
    • 2000
  • A finite-volume method is developed to solve turbulent flows around modern commercial hull forms with bow and stern bulbs. The RANS equations are solved. The cell-centered finite-volume method employs QUICK and central difference scheme for convective and diffusive flux discretization, respectively. The SIMPLEC method is adopted for the velocity-pressure coupling. The developed numerical methods are applied to calculate turbulent flow around KRISO 3600TEU container ship. Surface meshes are generated into five blocks: bow and stern bulbs, overhang, fore and afterbody. 3-D field grid system with O-H topology is generated using elliptic grid generation method. Surface friction lines and wake distribution at propeller plane is compared with experiment. The calculated results show that the present method can be used to predict flow around a modern commercial hull forms with bulbs.

  • PDF

Determination of the Optimal PTC Receiver Diameter Considering Heat Losses (열손실을 고려한 PTC(Parabolic Trough Concentrator) 흡수기 최적 직경 결정에 관한 연구)

  • Kang, Y.H.;Kwak, H.Y.;Yoon, H.K.;Yoo, C.K.;Lee, D.G.;Seo, T.B.
    • Solar Energy
    • /
    • v.20 no.1
    • /
    • pp.73-80
    • /
    • 2000
  • Considering the optical performance of the reflector and analyzing heat losses from the receiver, the optimal diameter of the absorber for a PTC(Parabolic Trough Concentrator) system was numerically determined. The results of this study were compared with the results of the IST (Industrial Solar Technology)-PTC test to verify the validity of the model. Good agreement was obtained with the deviation range from 0.4 to 7.7%. Generally, the net energy gained by the receiver shows the maximum at the particular absorber diameter and the specific gap size between the absorber and the glass envelop because the heat losses from the receiver becomes the minimum. The results showed that the conductive and convective heat losses became the minimum when the gap size was 7 to 10mm. Finally, it was known that the optimal absorber diameter was 62mm at $100^{\circ}C$, 57mm at $150^{\circ}C$, and 53mm at $200^{\circ}C$ of the absorber surface temperature, respectively.

  • PDF

Conjugate Heat Transfer for Circular Absorber in Parabolic Trough Concentrator (PTC형 집열기의 원관형 흡수기에서의 복합열전달)

  • Chung, J.M.;Seo, T.B.;Kang, Y.H.
    • Solar Energy
    • /
    • v.20 no.1
    • /
    • pp.81-89
    • /
    • 2000
  • In the present study, the characteristics of conductive and convective heat transfer occurred in a circular absorber of PTC (parabolic trough concentrator) for medium temperature solar energy utility were numerically investigated. A circular tube was considered as an absorber and the shape of PTC modeled in this study was based on the system that was installed in Korea Institute of Energy Research. Not only convection inside the tube but also conduction through the wall of the tube were analyzed, simultaneously. Circumferentially non-uniform heat flux that was simulated from the non-uniform solar disc model proposed by Jose was applied as thermal boundary condition on the tube surface. And, hydrodynamically fully developed laminar velocity profile was used as the inlet boundary condition and it was assumed that the working fluid was water. And, local heat fluxes at the interface of the tube and the working fluid were calculated for different wall thickness and thermal conductivity of the tube at various Reynolds number. Based on the results, the effects of thermal conduction of the tube on the local heat transfer were investigated.

  • PDF