Abstract
Oligodeoxynucleotides (ODNs) were separated by high-performance membrane chromatography (HPMC), a combined system of chromatography and membrane. The separation mechanism involved anion-exchange, and the stationary phase was cation CIM (Convective Interaction Media) DEAE disk (16${\times}$3 mm). Two types of mobile phase were used, buffer A (20mM Tris-HCl, pH 7.4) and buffer B (buffer A + 1M NaCl). As the amount of NaCl dissolved in buffer linearly increased, the retention time shortened, which enabled a gradient elution mode. Based on the number of theoretical plates and resolution observed, the optimum mobile phase and operating condition (Buffer A/Buffer B=50/50 - 20/80 vol%, gradient time 2 min) were experimentally determined. In this experimental condition, ODNs were separated within 2 min at a mobile phase flow rate of 6 ml/min.