• 제목/요약/키워드: convective clouds

검색결과 33건 처리시간 0.026초

국지성 집중호우 감시를 위한 천리안위성 2A호 대류운 전조 탐지 알고리즘 개발 (Development of GK2A Convective Initiation Algorithm for Localized Torrential Rainfall Monitoring)

  • 박혜인;정성래;박기홍;문재인
    • 대기
    • /
    • 제31권5호
    • /
    • pp.489-510
    • /
    • 2021
  • In this paper, we propose an algorithm for detecting convective initiation (CI) using GEO-KOMPSAT-2A/advanced meteorological imager data. The algorithm identifies clouds that are likely to grow into convective clouds with radar reflectivity greater than 35 dBZ within the next two hours. This algorithm is developed using statistical and qualitative analysis of cloud characteristics, such as atmospheric instability, cloud top height, and phase, for convective clouds that occurred on the Korean Peninsula from June to September 2019. The CI algorithm consists of four steps: 1) convective cloud mask, 2) cloud object clustering and tracking, 3) interest field tests, and 4) post-processing tests to remove non-convective objects. Validation, performed using 14 CI events that occurred in the summer of 2020 in Korean Peninsula, shows a total probability of detection of 0.89, false-alarm ratio of 0.46, and mean lead-time of 39 minutes. This algorithm can be useful warnings of rapidly developing convective clouds in future by providing information about CI that is otherwise difficult to predict from radar or a numerical prediction model. This CI information will be provided in short-term forecasts to help predict severe weather events such as localized torrential rainfall and hail.

THE DEVELOPMENT OF IR-BASED VISIBLE CHANNEL CALIBRATION USING DEEP CONVECTIVE CLOUDS

  • Ham, Seung-Hee;Sohn, Byung-Ju
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.430-432
    • /
    • 2008
  • Visible channel calibration method using deep convective clouds (DCCs) is developed. The method has advantages that visible radiance is not sensitive to cloud optical thickness (COT) for deep convective clouds because visible radiance no longer increases when COT exceeds 100. Therefore, once DCCs are chosen appropriately, and then cloud optical properties can be assumed without operational ancillary data for the specification of cloud conditions in radiative transfer model. In this study, it is investigated whether IR measurements can be used for the selection of DCC targets. To construct appropriate threshold value for the selection of DCCs, the statistics of cloud optical properties are collected with MODIS measurements. When MODIS brightness temperature (TB) at 11 ${\mu}$ m is restricted to be less than 190 K, it is shown that more than 85% of selected pixels show COT ${\geq}$ 100. Moreover, effective radius ($r_e$) distribution shows a sharp peak around 20 ${\mu}m$. Based on those MODIS observations, cloud optical properties are assumed as COT = 200 and $r_e$ = 20 ${\mu}m$ for the simulation of MODIS visible (0.646 ${\mu}m$) band radiances over DCC targets.

  • PDF

TRMM 자료로 분석한 매든-줄리안 진동의 대류성 및 층운형 강수 특징 (Rainfall Characteristics of the Madden-Julian Oscillation from TRMM Precipitation Radar: Convective and Stratiform Rain)

  • 손준혁;서경환
    • 대기
    • /
    • 제20권3호
    • /
    • pp.333-341
    • /
    • 2010
  • The stratiform rain fraction is investigated in the tropical boreal winter Madden-Julian oscillation (MJO) and summer intraseasonal oscillation (ISO) using Tropical Rainfall Measuring Mission (TRMM) Precipitation Rader data for the 11-yr period from 1998 to 2008. Composite analysis shows that the MJO/ISO produces larger stratiform rain rate than convective rain rate for nearly all phases following the propagating MJO/ISO deep clouds, with the greatest stratiform rainfall amount when the MJO/ISO center is located over the central-eastern Indian Ocean and the western Pacific. The fraction of the intraseasonally filtered stratiform rainfall compared to total rainfall (i.e., convective plus stratiform rainfall) amounts to 53~56%, which is 13~16% larger than the stratiform rain fraction estimated for the same data on seasonal-to-annual time scales by Schumacher and Houze. This indicates that the MJO/ISO exhibits the organized rainfall process which is characterized by the shallow convection/heating at the incipient phase and the subsequent flare-up of strong deep convection, followed by the development of stratiform clouds at the upper troposphere.

TRMM 위성의 강수레이더에서 관측된 동아시아 여름 강수의 특성 (Characteristics of Summer Rainfall over East Asia as Observed by TRMM PR)

  • 서은경
    • 한국지구과학회지
    • /
    • 제32권1호
    • /
    • pp.33-45
    • /
    • 2011
  • 이 연구는 TRMM(Tropical Rainfall Measuring Mission) 위성의 강수레이더인 PR(Precipitation Radar)의 5년간 (2002-2006) 6-8월 동안의 산출물을 분석하여 한반도 주변 지역과 동아시아의 아열대 및 열대 지역의 강우와 강우구름의 연직 구조 특성을 강우유형별로 분류하여 조사하였다. 한반도 주변 지역은 12.2%의 대류형 강우 비율로 다른 지역과 비교하여 약 6% 작았으며, 단위면적당의 강우 발생 빈도는 특히 열대지역의 50% 정도였다. 또한 한반도 주변 지역은 대류형에서 40% 더 강한 강우강도(10.4 mm/h)를 만들어내며, 층운형의 경우 세 지역 모두 비슷한 강우강도를 나타냈다. 평균적으로 강우강도는 운정고도와 비례하는 관계를 보였다. 레이더 반사도의 연직 구조를 통해 한반도 주변의 대류운은 연직적으로 매우 발달한 구름으로 더 높은 강우강도와 연관되어 있었다. 특히 열대지역의 대류형 강우구름들은 약 5 km의 고도 이하에서 지표에 접근함에 따라 수적들의 충돌병합에 의해 뚜렷한 레이더 반사도의 증가를 보였으며, 층운형 강우구름들은 더욱 뚜렷한 밝은 띠를 갖고 있었다. 한편 대류형에서 레이더 반사도의 첫 번째 경험직교함수 구조는 세 지역이 매우 비슷하지만, 두 번째 경험직교함수는 조금 다른 모습을 보였다. 한반도 주변 지역과 열대지역은 각각 상층과 하층에 큰 변동성을 보였다.

윈드프로파일러 관측 자료를 이용한 장마철 강수 형태 분류와 관련된 종관장의 특성 분석: 2003년-2005년 (Classification of Precipitation Type Using the Wind Profiler Observations and Analysis of the Associated Synoptic Conditions: Years 2003-2005)

  • 원혜영;조천호;백선균
    • 대기
    • /
    • 제16권3호
    • /
    • pp.235-246
    • /
    • 2006
  • Remote sensing techniques using satellites or the scanning weather radars depend mostly on the presence of clouds or precipitation, and leave the extensive regions of clear air unobserved. But wind profilers provide the most direct measurements of mesoscale vertical air motion in the troposphere, even in the context of heavy precipitation. In this paper, the precipitation events during the Changma period was classified into 4 precipitation types - stratiform, mixed stratiform/ convective, deep convective, and shallow convective. The parameters for the classification of analysis are the vertical structure of reflectivity, Doppler velocity, and spectral width measured with the wind profiler at Haenam for a three-year period (2003-2005). In addition, the synoptic fields and total amount of precipitation were analyzed using the Global Final Analyses (FNL) data and the Global Precipitation Climatology Project (GPCP) data. During the Changma period, the results show that the stratiform type was dominant under the moist-neutral atmosphere in 2003, whereas the deep convective type was under the moist unstable condition in 2004. The stratiform type was no less popular than the deep convective type among four seasons because the moist neutral layer was formed by the convergence between the upper-level jet and the low-level jet, and by the moisture transport along the western rim of the North Pacific subtropical anticyclone.

위성 적외영상 자료를 이용한 현업용 기상레이더 반사도 합성자료의 채프에코 제거 (Elimination of Chaff Echoes in Reflectivity Composite from an Operational Weather Radar Network using Infrared Satellite Data)

  • 한혜영;허복행;정성화;이규원;유철환;이종호
    • 대기
    • /
    • 제21권3호
    • /
    • pp.285-300
    • /
    • 2011
  • To discriminate and eliminate chaff echoes in radar measurements, a new removal algorithm in two-dimensional reflectivity composite at the height of 1.5 km has been developed by using the brightness temperature($T_B$) obtained from MTSAT-1R. This algorithm utilizes the fact that chaffs are not appeared in infrared satellite data of MTSAT-1R, but detected in radar measurements due to their significant backscattering in the given radar wavelength. The algorithm is evaluated for three different situations: chaff only, chaff mixed with convective storms, and chaff covered with clouds. The algorithm shows excellent performance for the cases of chaff only and chaff mixed with convective storms. However, the performance of the algorithm significantly depends on the presence of clouds. Thus, the statistical analysis of $T_B$ is performed in order to optimize the monthly threshold.

Characteristics of Typhoon Jelawat Observed by OSMI, TRMM/PR and QuikSCAT

  • Lim, Hyo-Suk;Choi, Gi-Hyuk;Kim, Han-Dol
    • 대한원격탐사학회지
    • /
    • 제16권4호
    • /
    • pp.293-303
    • /
    • 2000
  • The typhoon Jelawat, which was formed over the tropical Pacific ocean on August 1, 2000 and made a landfall over China on August 10, 2000, was observed by Korea Multi-purpose Satellite (KOMPSAT-1) Ocean Scanning Multispectral Imager (OSMI), Tropical Rainfall Measuring Mission (TRMM)/Precipitation Radar(PR) and Quick Scatterometer (QuikSCAT). In spite of discontinuous observation, important mesoscale features of typhoon depending on life cycle were detected prominently. It is possible to distinguish on the OSMI photograph between the eye-wall convection and the stratiform and other convective clouds near the center of typhoon Jelawat. The TRMM/PR observations show quite clearly the eye-wall convection, stratiform regions, and convective bands. Vertical cross section of rainfall in the genesis stage of typhoon Jelawat exhibits circular ring of intense convection surrounding the eye. The mature stage of typhoon Jelawat consists of a strong rotational circulation with clouds which are well organized about a center of low pressure. The OSMI, TRMM/PR and QuikSCAT measurements presented here agree qualitatively with each other and provide a wealth of information on the structure of typhoon Jelawat.

Convective Cloud RGB Product and Its Application to Tropical Cyclone Analysis Using Geostationary Satellite Observation

  • Kim, Yuha;Hong, Sungwook
    • 한국지구과학회지
    • /
    • 제40권4호
    • /
    • pp.406-413
    • /
    • 2019
  • Red-Green-Blue (RGB) imagery techniques are useful for both forecasters and public users because they are intuitively understood, have advantageous visualization, and do not lose observational information. This study presents a novel RGB convective cloud product and its application to tropical cyclone analysis using Communication, Oceanography, and Meteorology (COMS) satellite observations. The RGB convective cloud product was developed using the brightness temperature differences between WV ($6.75{\mu}m$) and IR1 ($10.8{\mu}m$), and IR2 ($12.0{\mu}m$) and IR1 ($10.8{\mu}m$) as well as the brightness temperature in the IR1 bands of the COMS, with the threshold values estimated from the Korea Meteorological Administration (KMA) radar observations and the EUMETSAT RGB recipe. To verify the accuracy of the convective cloud RGB product, the product was applied to the center positions analysis of two typhoons in 2013. Thus, the convective cloud RGB product threshold values were estimated for WV-IR1 (-20 K to 15 K), IR1 (210 K to 300 K), and IR1-IR2 (-4 K to 2 K). The product application in typhoon analysis shows relatively low bias and root mean square errors (RMSE)s of 23 and 28 km for DANAS in 2013, and 17 and 22 km for FRANCISCO in 2013, as compared to the best tracks data from the Regional Specialized Meteorological Center (RSMC) in Tokyo. Consequently, our proposed RGB convective cloud product has the advantages of high accuracy and excellent visualization for a variety of meteorological applications.

Infrared Rainfall Estimates Using the Probability Matching Method Applied to Coincident SSM/I and GMS-5 Data

  • Oh, Hyun-Jong;Sohn, Byung-Ju;Chung, Hyo-Sang
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.117-121
    • /
    • 1999
  • Relations between GMS-5 infrared brightness temperature with SSM/I retrieved rain rate are determined by a probability matching method similar to Atlas et al. and Crosson et al. For this study, coincident data sets of the GMS-5 infrared measurements and SSM/I data during two summer seasons of 1997 and 1998 are constructed. The cumulative density functions (CDFs) of infrared brightness temperature and rain rate are matched at pairs of two variables which give the same percentile contribution. The method was applied for estimating rain rate on 31 July 1998, examining heavy rainfall estimation of a flash flood event over Mt. Jiri. Results were compared with surface gauge observations run by Korean Meteorological Administration. It was noted that the method produced reasonably good quality of rain estimate, however, there was large area giving false rain due to the anvil type clouds surrounding deep convective clouds. Extensive validation against surface rain observation is currently under investigation.

  • PDF

WRF-Chem 모델을 활용하여 장마 기간 황해에서 발달하는 한랭운과 에어로졸 미세물리 과정 분석: 2017년 7월 15일 사례 (Cold Cloud Genesis and Microphysical Dynamics in the Yellow Sea using WRF-Chem Model: A Case Study of the July 15, 2017 Event)

  • 이범중;조재희;김학성
    • 한국지구과학회지
    • /
    • 제44권6호
    • /
    • pp.578-593
    • /
    • 2023
  • 2017년 7월 15일 서울과 수도권에 집중호우를 발생시킨 깊은 대류운과 강수 발달에 대한 종관 기상 메커니즘을 규명하고 중국 동부지역으로부터의 PM2.5 에어로졸의 간접효과를 WRF-Chem 실험을 통해 분석하였다. WRF-Chem 모델에 에어로졸과 복사의 피드백, 구름 화학 과정, 습식 세정을 모두 포함한 ARI (Aerosol Radiation Interaction) 실험과 에어로졸과 복사의 피드백을 제외하고 구름 화학 과정, 습식 세정만을 포함한 ACR (Aerosol Cloud Radiation interaction) 실험 결과의 차이로부터 PM2.5 에어로졸 간접효과를 산출하였다. 2017년 7월 15일 새벽에 황해와 한반도에서는 동아시아 대륙에서 저기압-북서 태평양의 고기압 분포로 인해 중국 남동 지역과 동중국해로부터 덥고 습한 기류가 수렴하고 있었다. 이러한 황해의 종관 기상에 의해 발달하는 대류운은 높이 12 km 이상이며 고체 수상체를 형성하고 있었는데, 이는 주로 대륙 위에서 발달하는 한랭운(많은 빙정을 형성하며 운정고도가 8 km 이상)의 특성을 나타내고 있었다. 특히, WRF-Chem 모델 실험을 통해 중국 동부지역으로부터 확산하는 PM2.5 에어로졸이 구름물 형성에 5.7%, 고체 수상체 형성에 10.4%, 그리고 액체 수상체 형성에 10.8%로 대류운이 한랭운으로 발달하는 데 기여하고 있었다. 본 연구는 황해 위에서 깊은 대류운이 발달하는 과정에 대한 기상적 메커니즘과 더불어 중국 동부지역으로부터 에어로졸에 의한 간접효과의 영향을 제시하였다.