Browse > Article
http://dx.doi.org/10.5467/JKESS.2011.32.1.33

Characteristics of Summer Rainfall over East Asia as Observed by TRMM PR  

Seo, Eun-Kyoung (Department of Earth Science Education, Kongju National University)
Publication Information
Journal of the Korean earth science society / v.32, no.1, 2011 , pp. 33-45 More about this Journal
Abstract
The characteristics and vertical structure of the rainfall are examined in terms of rain types using TRMM (Tropical Rainfall Measuring Mission) PR (Precipitation Radar) data during the JJA period of 2002-2006 over three different regions; midlatitude region around the Korean Peninsula (EA1), subtropical East Asia (EA2), and tropical East Asia (EA3). The convective rain fraction in the EA1 region is 12.2%, which is smaller by 6% than those in the EA2 and EA3 regions. EA1 shows less frequent convective rain events, which are about 0.5 times as many as those in EA3. EA1 produces the mean convective rain rate of 10.4 mm/h that is about 40% larger than EA2 and EA3 while all regions have similar mean stratiform rain rate. The relationships between storm height and rain rate indicate that the rain rate is proportional to the storm height. Based on the vertical structure of radar reflectivity, EA1 produces deeper and stronger convective clouds with higher rain rate compared to the other regions. In EA3, radar reflectivity increases distinctly toward the land surface at altitude below 5 km, indicating more dominant coalescence-collision processes than the other regions. Furthermore, the bright band of stratiform rain clouds in EA3 is very distinct. In convective rain clouds, the first EOFs of radar reflectivity profiles are similar among the three regions, while the second EOFs are slightly different. The larger variability exists at upper layers for EA1 while it exits at lower levels for EA3.
Keywords
TRMM; PR; rain rate; radar reflectivity; East Asia;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 May, P.T. and Rajopadhyaya, D.K., 1999, Vertical velocity characteristics of deep convection over Darwin, Australia. Monthly Weather Review, 127, 1056-1071.   DOI
2 Biggerstaff, M.I. and Seo, E.K., 2010, An EOF-Based Comparison and evaluation of simulated passive microwave signatures to observations over tropical oceans. Journal of Geophysical Research, 115, doi:10.1029/2009JD013029.   DOI
3 Choi, Y., 2002, Trends in daily precipitation events and their extremes in the southern region of Korea. Korea Society of Environmental Impact Assessment, 11, 189-203.   과학기술학회마을
4 Cotton, W.R., Lin, M.-S., McAnelly, R.L., and Tremback,C.J., 1989, A composite model of mesoscale convective complexes. Monthly Weather Review, 117, 765-783.   DOI
5 Emanuel, K.A., Neelin, J.D., and Bretherton, C.S., 1994, On large-scale circulations in convecting atmospheres. Quarterly Journal of the Royal Meteorological Society, 120, 1111-1143.   DOI
6 Houze, R.A.Jr., 1981, Structures of atmospheric precipitation Systems: A global survey. Radio Science, 16, 671-689.   DOI
7 Houze, R.A.Jr., 1997, Stratiform precipitation in regions of convection: A meteorological paradox? Bulletin of American Meteorological Society, 78, 2179-2196.   DOI
8 Houze, R.A.Jr., 2004, Mesoscale convective systems. Reviews of Geophysics, 42, RG4003, 2004RG000150.   DOI
9 Hu, Z., 1995, The role of raindrop coalescence and breakup in rainfall modeling. Atmospheric Research, 37, 343-359.   DOI
10 Iguchi, T. and Meneghini, R., 1994, Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne of spaceborne radar data. Journal of Atmospheric and Oceanic Technology, 11, 1507-1516.   DOI
11 Iguchi, T., Kozu, T., Meneghini, R., Awaka, J., and Okamoto, K., 2000, Rain-profiling algorithm for the TRMM Precipitation Radar. Journal of Applied Meteorology, 39, 2038-2052.   DOI
12 김형우, 1999, 도플러 레이다 자료를 이용한 집중호우의 중규모대류계 분석. 서울대학교 이학석사학위논문, 101 p.
13 김형우, 이동규, 김영철, 2000, 도플러 레이다를 이용한 중규모 대류계의 집중호우 분석. 한국기상학회 2000 가을학술대회 초록논문집, 118-122.
14 신임철, 김태룡, 이은정, 김은숙, 김은희, 배선희, 박연옥, 2007, 8월 및 여름철 강수량의 장기변화 경향. 한국기상학회 2007가을 학술대회 초록논문집, 484-485.
15 이승호, 권원태, 2004, 한국의 여름철 강수량 변동 -순별 강수량을 중심으로-. 대한지리학회지, 39, 819-985.   과학기술학회마을
16 이한아, 염성수, 2010, 구름모형에서의 현실적인 핵화과정 모수화를 위한 에어러솔 분포 적용 실험. 한국기상학회 2010 가을 학술대회 초록논문집, 420-421.
17 최영진, 문자연, 2000, 한국의 여름철 일 강우강도 변화 경향. 한국기상학회 2000 가을 학술대회 초록논문집, 339-341.
18 허창회, 강인식, 1988, 한국지역 강수의 변동성에 관한 연구. 한국기상학회지, 24, 38-48.
19 Biggerstaff, M.I. and Houze, R.A.Jr., 1989, Use of dual-Doppler radar analyses in a composite study of a midlatitude squall line observed during PRE-STORM. Preprints, 24th Conference on Radar Meteorology, Tallahassee, American Meteorological Society, 455-458.
20 Biggerstaff, M.I. and Houze, R.A.Jr., 1991, Kinematic and precipitation structure of the 10-11 June 1985 squall line. Monthly Weather Review, 119, 3034-3065.   DOI
21 Olson, W.S., Kummerow, C.D., Yang, S., Petty, G.W., Tao,W.K., Bell, T.L., Braun, S.A., Wang, Y., Lang, S.E.,Johnson, D.E., and Chiu, C., 2006, Precipitation and latent heating distributions from satellite passive microwave radiometry. Part I: Method and uncertainties. Journal of Applied Meteorology and Climatology, 45, 702-720.   DOI
22 Biggerstaff, M.I. and Houze, R.A.Jr., 1993, Kinematics and microphysics of the transition zone of the 10-11 June 1985 squall line. Journal of Atmospheric Sciences, 50, 3091-3110.   DOI
23 Biggerstaff, M.I., Seo, E.K., Hristova-Veleva, S., and Kim,K.-Y., 2006, Impact of cloud model microphysics on passive microwave retrievals of cloud properties. Part I: Model comparison using EOF analyses. Journal of Applied Meteorology and Climatology, 47, 930-954.
24 김찬수, 서명석, 2008, 우리나라에서 최근(1976-2005)강수의 변화시점. 한국기상학회지, 18, 111-120.
25 Xu, K.-M. and Randall, D.A., 1999, Updraft and downdraft statistics of simulated tropical and midlatitude cumulus convection. Journal of the Atmospheric Sciences, 58, 1630-1649.
26 Yunfei, F., Yihua, L., Liu, G., and Qiang, W., 2003, Seasonal characteristics of precipitation in 1998 over East Asia as derived from TRMM PR. Advances in Atmospheric Sciences, 20, 511-529.   DOI
27 Yuter, S.E. and Houze, R.A.Jr., 1995, Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part III: Vertical mass transport, mass divergence, and synthesis. Monthly Weather Review, 123, 1964-1983.   DOI
28 Yuter, S.E., Miller, M., Stout, J., Wood, R., Kwiatkowski, J., Horn, D., and Spooner, C., 2006, Remaining challenges in satellite precipitation estimation for the Tropical Rainfall Measuring Mission. 4th European Conference on Radar in Meteorology and Hydrology, Barcelona, Spain.
29 Zipser, E.J. and LeMone, M.A., 1980, Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. Journal of Atmospheric Sciences, 37, 2458-2469.   DOI
30 Zipser, E.J., 1982, Use of a conceptual model of the life cycle of mesoscale convective systems to improve veryshort- range forecasts. In Browning, K. (ed.), Nowcasting, Academic Press, USA, 191-204.
31 Seo, E.K. and Biggerstaff, M.I., 2006, Impact of cloud model microphysics on passive microwave retrievals of cloud properties. Part II: Uncertainty in rain, hydrometeor structure and latent heating retrievals. Journal of Applied Meteorology and Climatology, 47, 955-972.
32 Seo, E.K., Liu, G., Suh, M.-S., and Sohn, B.J., 2010, The varying response of microwave signatures to different types of overland rainfall found over the Korean peninsula. Journal of Atmospheric and Oceanic Technology, 27, 785-792.   DOI
33 Shea, D., Trenberth, K., and Reynolds, R., 1990, A global monthly sea surface temperature climatology. NCAR technical note (NCAR/TN-345+STR), Boulder, Colorado, USA, 167 p.
34 Simpson, J., Alder, R.F., and North, G.R., 1988, A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bulletin of American Meteorological Society, 69, 278-295.   DOI
35 Srivastava, R.C., 1967, On the role of coalescence between raindrops in shaping their size distribution. Journal of Atmospheric Sciences, 24, 287-291.   DOI
36 Srivastava, R.C., 1971, Size distribution of raindrops generated by their breakup and coalescence. Journal of Atmospheric Sciences, 28, 410-415.   DOI
37 Stout, J. and Kwiatkowski, J., 2004, Selected analyses of TRMM instantaneous rainfall data. 2004 Geoscience and Remote Sensing Symposium Proceedings, 914-917.
38 Kingsmill, D.E. and Houze, R.A.Jr., 1999, Thermodynamic characteristics of air flowing into and out of precipitating convection over the west Pacific warm pool. Quarterly Journal of the Royal Meteorological Society, 125, 1209-1229.   DOI
39 Thurai, M., Deguchi, E., Iguchi, T., and Okamoto, K.,2003, Freezing height distribution in the tropics. International Journal of Satellite Communications and Networking, 21, 533-545.   DOI
40 Johnson, R.H., Rickenbach, T., Rutledge, S.A., Ciesielski, P., and Schubert, W., 1999, Trimodal characteristics of tropical convection. Journal of Climate, 12, 2397-2418.   DOI
41 Kummerow, C.D., Barnes, W., Kozo, T., Shiute, J., and Simpson, J., 1998, The Tropical Rainfall Measuring Mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology, 15, 809-817.   DOI
42 Kummerow, C.D., Hong, Y., Olson, W.S., Yang, S., Adler,R.F., McCollum, J., Ferraro, R., Petty, G., Shin, D.B.,and Wilheit, T.T., 2001, The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. Journal of Applied Meteorology, 40, 1801-1820.   DOI
43 LeMone, M.A. and Zipser, E.J., 1980, Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity and mass flux. Journal of Atmospheric Sciences, 37, 2444-2457.   DOI
44 Lee, D.-K., Kim, H.-R., and Hong, S.-Y., 1998, Heavy rainfall over Korea during 1980-1990. Journal of Atmospheric Sciences, 1, 32-50.
45 Maddox, R.A., Rodgers, D.M., and Howard, K.M., 1982, Mesoscale convective complexes over the United States in 1981: Annual summary. Monthly Weather Review, 110, 1501-1514.   DOI