• 제목/요약/키워드: convective and diffusive fluxes

검색결과 4건 처리시간 0.022초

Determination of the Convective and Diffusive Fluxes from the Transient Profiles of Solute and Solvent under Evaporation Experiment

  • Wei, Dai;Lee, Sunhoon;Yu, Amemiya
    • 환경영향평가
    • /
    • 제11권3호
    • /
    • pp.173-187
    • /
    • 2002
  • 토양 속에서 발생될 수 있는 용질과 용매의 복합 수송시스템을 대상으로 한 연구 중 회석상태로부터 포화상태에 이르기까지의 넓은 농도분포를 가지는 토양 용액에 적용될 수 있는 물리 화학적 이론에 입각한 지배방정식을 발표한 연구는 전무한 실정이다. 본 연구는 용매와 토양기체간 그리고 용질과 결정간의 상변화를 고려한 연립물질수지방정식을 제시하고, 여기에 타율적 대류를 포함하는 상호확산 분산수송방정식을 도입하여 대류와 확산에 관한 프럭스를 분리, 결정하는 것을 목적으로 한다. 대류 플럭스의 결정은 타율적으로 이루어지는 것이 이론적으로 타당하며, 이러한 타율적 대류 플럭스가 제공된다면 본 연구에서 제시된 지배방정식을 이용해서 토양용액의 복합수송 시스템을 범용적으로 해석, 예측할 수 있을 것으로 판단된다.

Effects of Solutally Dominant Convection on Physical Vapor Transport for a Mixture of Hg2Br2 and Br2 under Microgravity Environments

  • Kim, Geug-Tae;Kwon, Moo Hyun
    • Korean Chemical Engineering Research
    • /
    • 제52권1호
    • /
    • pp.75-80
    • /
    • 2014
  • The convective flow structures in the vapor phase on earth are shown to be single unicellular, indicating the solutally dominant convection is important. These findings reflect that the total molar fluxes show asymmetrical patterns in a viewpoint of interfacial distributions. With decreasing the gravitational level form $1g_0$ down to $1.0{\times}10^{-4}g_0$, the total molar fluxes decay first order exponentially. It is also found that the total molar fluxes decay first order exponentially with increasing the partial pressure of component B, PB (Torr) form 5 Torr up to 400 Torr. Under microgravity environments less than $1g_0$, a diffusive-convection mode is dominant and, results in much uniformity in front of the crystal regions in comparisons with a normal gravity acceleration of $1g_0$.

Effects of convection on physical vapor transport of Hg2Cl2 in the presence of Kr - Part I: under microgravity environments

  • Lee, Yong Keun;Kim, Geug-Tae
    • 한국결정성장학회지
    • /
    • 제23권1호
    • /
    • pp.20-26
    • /
    • 2013
  • Special attention in the role of convection in vapor crystal growth has been paid since some single crystals under microgravity environments less than 1 $g_0$ exhibits a diffusive-convection mode and much uniformity in front of the crystal regions than a normal gravity acceleration of 1 $g_0$. The total molar fluxes show asymmetrical patterns in interfacial distribution, which indicates the occurrence of either one single or more than one convective cell. As the gravitational level decreases form 1 $g_0$ down to $1.0{\times}10^{-4}\;g_0$, the intensity of convection, indicative of the maximum molar fluxes, is reduced significantly for ${\Delta}T=30K$ and 90 K. The total molar fluxes decay first order exponentially with the partial pressure of component B, PB (Torr) for 20 Torr ${\leq}PB{\leq}$ 300 Torr, and two gravity accelerations of $g_y=1\;g_0$ and 0.1 $g_0$.

Development of a Flow Analysis Code Using an Unstructured Grid with the Cell-Centered Method

  • Myong, Hyon-Kook;Kim, Jong-Tae
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2218-2229
    • /
    • 2006
  • A conservative finite-volume numerical method for unstructured grids with the cell-centered method has been developed for computing flow and heat transfer by combining the attractive features of the existing pressure-based procedures with the advances made in unstructured grid techniques. This method uses an integral form of governing equations for arbitrary convex polyhedra. Care is taken in the discretization and solution procedure to avoid formulations that are cell-shape-specific. A collocated variable arrangement formulation is developed, i.e. all dependent variables such as pressure and velocity are stored at cell centers. For both convective and diffusive fluxes the forms superior to both accuracy and stability are particularly adopted and formulated through a systematic study on the existing approximation ones. Gradients required for the evaluation of diffusion fluxes and for second-order-accurate convective operators are computed by using a linear reconstruction based on the divergence theorem. Momentum interpolation is used to prevent the pressure checkerboarding and a segregated solution strategy is adopted to minimize the storage requirements with the pressure-velocity coupling by the SIMPLE algorithm. An algebraic solver using iterative preconditioned conjugate gradient method is used for the solution of linearized equations. The flow analysis code (PowerCFD) developed by the present method is evaluated for its application to several 2-D structured-mesh benchmark problems using a variety of unstructured quadrilateral and triangular meshes. The present flow analysis code by using unstructured grids with the cell-centered method clearly demonstrate the same accuracy and robustness as that for a typical structured mesh.