• Title/Summary/Keyword: convective

Search Result 1,276, Processing Time 0.033 seconds

A Study on the Performance Improvement of the Micromachined Convective Accelerometer (열 대류 가속도계의 성능향상에 관한 연구)

  • Youn, Sung-Kie;Oh, Jun-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.570-577
    • /
    • 2007
  • A micromachined convective accelerometer is a recently developed device. Typical micromachined accelerometers use a solid proof mass for measuring acceleration. But a micromachined convective accelerometer does not use a solid proof mass. A micromachined convective accelerometer is composed of a heating resistor and temperature sensors. This device measures acceleration by using convective heat transfer phenomenon. Therefore characteristics of a micromachined convective accelerometer are different as compared with typical micromachined accelerometer. In this research, we analyze the convective accelerometer by using transient convective heat transfer analysis. Based on the results of a convective accelerometer, we propose a new model which has improved performance.

The Characteristics and Predictability of Convective System Based on GOES-9 Observations during the Summer of 2004 over East Asia (정지기상위성의 밝기온도로 분석한 2004년 동아시아지역에서 발생한 여름철 대류 시스템의 특성과 그 예측 가능성)

  • Baek, Seon-Kyun;Choi, Young-Jean;Chung, Chu-Yong;Cho, Chun-Ho
    • Atmosphere
    • /
    • v.16 no.3
    • /
    • pp.225-234
    • /
    • 2006
  • Convective systems propagate eastward with a persistent pattern in the longitude-time space. The characteristic structure and fluctuation of convective system is helpful in determining its predictability. In this study, convective index (CI) was defined as a difference between GOES-9 window and water vapor channel brightness temperatures following Mosher (2001). Then the temporal-spatial scales and variational characteristics of the summer convective systems in the East Asia were analyzed. It is found that the average moving speed of the convective system is about 14 m/s which is much faster than the low pressure system in the summer. Their average duration is about 12 hours and the average length of the cloud streak is about 750km. These characteristics are consistent with results from other studies. Although the convective systems are forced by the synoptic system and are mostly developed in the eastern edge of the Tibetan Plateau, they have a persistent pattern, i.e., appearance of the maximum intensity of convective systems, as they approach the Korean Peninsula. The consistency of the convective systems, i.e., the eastward propagation, suggests that there exists an intrinsic predictability.

A Study of Convective Band with Heavy Rainfall Occurred in Honam Region

  • Moon, Tae-Su;Ryu, Chan-Su
    • Journal of Environmental Science International
    • /
    • v.24 no.5
    • /
    • pp.601-613
    • /
    • 2015
  • On the study of the characteristics and life cycle of mesoscale convective band in type of airmass that occurred in the Honam area from June to September for only 4 years in the period of 2009~2012, 10 examples based on the amount of rainfall with AWS 24 hours/60 minutes rainfalls, Mt. Osung radar 1.5 km CAPPI/X-SECT images and KLAPS data for convective band with heavy rainfall event were selected. There were analyzed and classified by using the convective band with heavy rainfall occurred along the convergence line of sea wind in the form of individual multi-cellular cell and moving direction of convective band appeared in a variety of patterns; toward southwestern (2 cases), northeastern (4 cases), congesting (2 cases), and changing its moving direction (2 cases). The case study dated of the 17th Aug. 2012 was chosen and implemented by sequentially different evolution of its shape along the convergence line of sea wind cell and moving direction of convective band as equivalent potential temperatures at the lower layer have increased to the upper layer 500 hPa, that the individual cells were developed vertically and horizontally through their merger, but owing to divergence caused by weakened rainfall and descending air current, the growth of new cell was inhibited resulting in dissipation of convective cells.

Numerical Analysis of Convective Heat and Mass Transfer around Human Body under Strong Wind

  • Li, Cong;Ito, Kazuhide
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 2012
  • The overarching objective of this study is to predict the convective heat transfer around a human body under forced strong airflow conditions assuming a strong wind blowing through high-rise buildings or an air shower system in an enclosed space. In this study, computational fluid dynamics (CFD) analyses of the flow field and temperature distributions around a human body were carried out to estimate the convective heat transfer coefficient for a whole human body assuming adult male geometry under forced convective airflow conditions between 15 m/s and 25 m/s. A total of 45 CFD analyses were analyzed with boundary conditions that included differences in the air velocity, wind direction and turbulence intensity. In the case of approach air velocity $U_{in}=25m/s$ and turbulent intensity TI = 10%, average convective heat transfer coefficient was estimated at approximately $100W/m^2/K$ for the whole body, and strong dependence on air velocity and turbulence intensity was confirmed. Finally, the formula for the mean convective heat transfer coefficient as a function of approaching average velocity and turbulence intensity was approximated by using the concept of equivalent steady wind speed ($U_{eq}$).

A Study on Redesign and Utilization of a Convective Circulation Box for Observations of Land and Sea Breezes (해륙풍 원리 이해를 위한 대류상자 재설계와 활용에 관한 연구)

  • Yang, Mi-Seon;Yun, Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.31 no.3
    • /
    • pp.246-258
    • /
    • 2010
  • A convective circulation box was redesigned after analyzing reasons why adolescent elementary school students could not derive a convective circulation concept from the convection circulation box experiments. Even though students were in the formal operational period of Piaget, the adolescents felt difficult to understand a concept of the natural phenomena they have never seen before. Thus, we designed a method to help students increase their scientific understandings about the concept through developing a miniature convective circulation box. Findings indicated that an application of redesigned convective circulation box in the classroom experiment significantly increased the students' understanding about the convective circulations of land and sea breezes, and as well as their participation in the activities. In addition, the redesigned convective circulation box motivated students to develop their scientific thinking skills by allowing them to decide where to put visible incenses inside the box and to directly observe the smoke currents circulation formed accordingly. Redesigning and using a convective circulationbox as a miniature of natural phenomenon helps students avoid having misconceptions. The biggest merits of the box are that it is observable in all directions, it provides much clearer convective circulations comparing to the extant box, and it requires low production costs.

On Study of Summertime Ice Formation in the Ice Valley at Unchiri, Gangwon-Province (강원도 정선군 운치리 얼음골의 여름철 결빙현상에 관한 연구)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.857-863
    • /
    • 2002
  • The meteorological elements were measured to investigate cause of summertime ice formation at Unchiri, Gangwon Province. The cause of freezing at valley was conformed as adiabatic expansion theory, latent heat of evaporation, natural convective theory, cold air remain theory, and convective freezing theory according to former study. However nither theory produced a satisfactory explanation. This studying area is not valley but ridge, and underground water surface exists at below than freezing height. wintertime temperature drop and summertime cold air spouting were explain as natural convective theory, generation of water drop on the rock was explained as cooling theory by air expansion, and ice formation on the rock was explained as adiabatic expansion theory. In conclusion, formation of ice valley at Unchiri was formed by natural convective theory, adiabatic expansion theory, and latent heat of evaporation successively.

Optimal Design of a Convective MEMS Accelerometer (열대류형 초소형 가속도계의 최적 설계)

  • Park, Byoung-Kyoo;Kim, Joon-Won;Moon, Il-Kwon;Kim, Dong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1951-1956
    • /
    • 2008
  • Various MEMS accelerometers are used in engineering applications including automobiles, mobile phones, military systems, and electronic devices. Among them, the thermal accelerometer employing the temperature difference induced by the convective flow inside the micro cavity has been a topic of interest. As the convective sensor does not utilize a solid proof mass, it is compact, lightweight, inexpensive to manufacture, sensitive and highly endurable to mechanical shock. However, the complexity of the convective flow and various design constraints make optimization of a device a crucial step before fabrication. In this work, optimization of a 2-axis thermal convective MEMS accelerometer is conducted based on 3-dimensional numerical simulation. Parametric studies are performed by varying the several design variables such as the heater shape/size, the cavity size and types of the gas medium and the position of temperature probes in the sensor. The results of optimal design are presented.

  • PDF

Characteristics of Satellite Brightness Temperature and Rainfall Intensity over the Life Cycle of Convective Cells-Case Study (대류 세포의 발달 단계별 위성 휘도온도와 강우강도의 특성-사례연구)

  • Kim, Deok Rae;Kwon, Tae Yong
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.273-284
    • /
    • 2011
  • This study investigates the characteristics of satellite brightness temperature (TB) and rainfall intensity over the life cycle of convective cells. The convective cells in the three event cases are detected and tracked from the growth stage to the dissipation stage using the half-hourly infrared (IR) images. For each IR images the values of minimum, mean, and variance for the convective cell's TBs and the sizes of convective cells are calculated and also the relationship between TB and rainfall intensity are investigated, which is obtained using the pixel values of satellite TB and the ground rainfall intensity measured by AWS (Automatic Weather Station). At the growth stage of the convective cells, the TB's variance and cloud size consistently increased, whereas TB's minimum and mean consistently decreased. At this stage the empirical relationships between TB and rainfall intensity are statistically significant and their slopes (intercepts) in absolute values are relatively large (small) compared to those at the dissipation stage. At the dissipation stage of the convective cells, the variability of TB distributions shows the opposite trend. The statistical significance of the empirical relationships are relatively weak, but their slopes (intercepts) vary over life cycle. These results indicate that satellite IR images can provide valuable information in identifying the convective cell's maturity stage and in the growth stage, they may be used in providing considerably accurate rainfall estimates.

The Comparison Study of Radiative and Convective Heat Transfer in a Room Air Ventilation (환기구를 가진 실내공간에서 복사 및 대류열전달의 비교 연구)

  • 정효민;정한식;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.229-235
    • /
    • 1997
  • The comparison of radiative and convective heat transfer in a room air ventilation is investi¬gated by a numerical simulation. The room air temperature distributions with radiation are appeared more uniform than without radiation at Gr= 1460 and Re=50. The mean Nusselt number in the radiative heat transfer shows less value than convective heat transfer. The total mean Nusselt number is found Wall 1> Wall 3${\fallingdotseq}$Wall 2 7 Wall 4.

  • PDF

THE EXISTENCE OF GLOBAL ATTRACTOR FOR CONVECTIVE CAHN-HILLIARD EQUATION

  • Zhao, Xiaopeng;Liu, Bo
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.357-378
    • /
    • 2012
  • In this paper, we consider the convective Cahn-Hilliard equation. Based on the regularity estimates for the semigroups, iteration technique and the classical existence theorem of global attractors, we prove that the convective Cahn-Hilliard equation possesses a global attractor in $H^k$($k\geq0$) space, which attracts any bounded subset of $H^k({\Omega})$ in the $H^k$-norm.