• 제목/요약/키워드: convection tube

검색결과 169건 처리시간 0.019초

경사진 원통형 용기내에서 상변화 물질의 내향 용융에 관한 실험적 연구 (Experimental Study on Inward Melting of Phase Change Material in Inclined Circular Tube)

  • 임장순;송하진
    • 태양에너지
    • /
    • 제12권1호
    • /
    • pp.48-58
    • /
    • 1992
  • 온도가 일정한 외벽을 열원으로 하는 수직 원통형 용기내에 채워진 물질(PCM)의 내향용융 과정에서 용기의 경사각의 변화에 따른 상변화 물질 내의 온도 분포, 용융율, 용융 에너지 등을 실험적으로 연구, 분석하였다. 상변화 물질로는 용융점 온도가 $42.5^{\circ}C$인 n-docosane paraffin($C_{22}H_{46}$)을 사용하였다. 수직 원통형 용기내에서 PCM 용융의 열전달 기구는 자연 대류에 의한 용융이 지배적인 반면 경사진 용기 내에서 용융은 자연 대류 및 고상 PCM과 용기 벽면의 직접 접촉에 의한 조합된 열전달 현상으로 나타났으며, 경사진 용기 내에서 파라핀의 용융율 및 용융에너지는 동일 온도 조건에서 수직 원통형 용기에서 보다 높은 값을 나타내었다.

  • PDF

원형휜-원형관 열교환기에 대한 자연대류 열전달상관식 (Natural Convection Correlation of Circular Finned Tube Heat Exchanger)

  • 강희찬;장현순
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권5호
    • /
    • pp.747-752
    • /
    • 2008
  • An experimental study has been conducted on the natural convection heat transfer for the 7 kinds of circular finned tube heat exchangers. Empirical correlation was suggested at the range of 3,500

수직관내에서의 자연대류에 관한 연구 (Study on The Free Convection in a Heated Vertical Open Tube)

  • 이태식;김희동
    • 대한기계학회논문집
    • /
    • 제1권3호
    • /
    • pp.146-155
    • /
    • 1977
  • The free convection in a vertical tube open at both ends and heated at the heated at the wall is studied by analytical approach and checked by experiment. The flow is assumed to be both stable and laminar. The incompressible boundary layer equations fot the system were solved by a finite difference method for conditions of constant wall temperature and conctant wall heat flux. Temperature profiles of the flow in the tube were measured by thermocouples and are compared with the calculated profiles. Agreement of the analytical and experimental results was good.

상변화 물질을 사용한 축열조에서의 열전달 - 수직원관에서의 내향용융 실험 - (Heat Transfer in Heat Storage System with P.C.M. - Inward Melting in a Vertical Tube)

  • 손화승;황태인;이채문;최국광;임장순
    • 태양에너지
    • /
    • 제9권1호
    • /
    • pp.53-61
    • /
    • 1989
  • In the present investigation, experiments on the melting of a phase change material were performed to research heat transfer phenomena generated by means of conduction and natural convection in the vertical tube at inward melting. The phase change material used in the experiments is 99 percent pure n-Docosane paraffin which is measured melting temperature of $42.5^{\circ}C$, latent heat of 37.5 cal/g, heat conductivity of $0.1505W/m^{\circ}C$. Experiments were performed both in the no-subcooling which is initiating it at melting temperature of phase change material, and in the subcooling which means to initiate it under melting temperature of phase change material, in order to compare and investigate the horizontal temperature history, vertical temperature history, ratio of melting and melted mass, figure of the melting front in the vertical tube. In the experimental results, heat transfer from tube wall to phase change material were due to conduction at early stage and due to natural convection with the passage of time, and then occurred melting downward from surface by volumetric expansion. Natural convection affects temperature distribution in the tube, ratio of melting and melted mass, figure of the melting front and then progress rapidly in case of nosubcooling compared to subcooling.

  • PDF

원관 주위의 대류 열전달에서 경계조건에 대한 원주방향 열전도의 영향 (Effect of Circumferential Wall Heat Conduction on Boundary Conditions for Convection Heat Transfer from a Circular Tube in Cross Flow)

  • 이상봉;이억수;김시영
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.39-45
    • /
    • 2001
  • With uniform heat generation from the inner surface of the cylindrical heater placed in a cross flow boundary condition, heat flow that is conducted along the wall of the heater creates a non-isothermal surface temperature and non-uniform heat flux distribution. In the present investigation, the effects of circumferential wall heat conduction on convection heat transfer is investigated for the case of forced convection around horizontal circular tube in cross flow of air. The wall conduction number which can be deduced from the governing energy equation should be used to express the effect of circumferential wall heat conduction. It is demonstrated that the circumferential wall heat conduction influences local Nusselt numbers of one-dimensional and two-dimensional solutions.

  • PDF

수직원관 주위에서 밀도차와 자연대류를 고려한 응고과정 해석 (Analysis of Solidification Process Around a Vertical Tube Considering Density Change and Natural Convection)

  • 김무근;노승탁
    • 대한기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.142-155
    • /
    • 1992
  • 본 연구에서는 실제 빙축열 시스템의 해석을 위한 기초 모델로서 수직원관 주 위의 응고과정에 대하여 밀도차와 자연대류 효과 및 최대 밀도점을 나타내는 밀도-온 도 관계식을 도입한 수치해석과 실험을 통하여 여러가지 매개변수들이 상변화에 미치 는 영향을 알아 보았다.

2개의 수직휜이 부착된 내관으로부터 환상공간내의 자연대류 열전달 (Natural convection heat transfer in a horizontal annulus from an inner tube with two vertical fins)

  • 정태현;정한식;권순석
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.654-660
    • /
    • 1991
  • Natural convection heat transfer in a horizontal annulus from an inner tube with two vertical fins has been studied for the effects of dimensionless fin length and Rayleigh number. The maximum local Nusselt number of inner tube was obtained at .theta. = 145.deg. and that of outer cylinder at .theta. = 0.deg. for the case of $l_{F}$=0.3 Local Nusselt number distributions for the lower fins show higher values than that of the upper fins. The mean Nusselt number of inner tube was increased with the values of dimensionless fin length. The mean Nusselt number can be represented in an exponential function of Grashof number at various fin lengths. As compared with experimental and numerical results, isotherms and local Nusselt number show good agreement.t.

휜붙이 수직냉각관 주위의 상변화물질에서 응고열전달에 관한 연구 (A study on heat transfer during solidification of phase change material on a finned vertical cooling tube)

  • 정석주;송하진
    • 한국안전학회지
    • /
    • 제11권2호
    • /
    • pp.33-41
    • /
    • 1996
  • Experiments were performed to study solidification of phase change material on a finned vertical tube when either conduction In the solid or natural convection in a liquid controls the heat transfer. The liquid was housed in a cylindrical containment vessel whose surface was maintained at a uniform, time-invariment temperature during a data run, and the solidification occurred at a finned and unfinned vertical tube positioned along the axis of the vassel. The phase change material(PCM) employed in this experiment is 99 percent pure n-Octacosan paraffin($C -{28}H_{58}/$). For conduction-controlled and convection-controlled solidification, the enhancement of the solidified mass rate due to finning is great when the solidified layer is thin and decreases as the layer grows thicker. It is studied that the latent energy($E_{\lambda}$) is the largest contributor to the total extracted energy($E_{\lambda} + E_{sl}+E_{s2}$) and the total extracted energy rate at a finned vertical tube is greater than that at a unfinned vertical tube.

  • PDF

Ribbed 管의 管傾斜角이 熱傳達에 미치는 影響 (The effect of inclined ribbed tubes on heat transfer and friction loss)

  • 박성찬;김종보
    • 대한기계학회논문집
    • /
    • 제11권1호
    • /
    • pp.105-109
    • /
    • 1987
  • 본 연구는 열교환기의 설치 및 사용목적에 따라 전열관내유동이 경사류가 될 때 특히 자연순환(2*$10^{6}$<Gr<15*$10^{6}$)의 경우와 강제순환(3,000<Re< 40,000)의 경우에 대해서 열전달특성과 유동마찰에 의한 손질을 규명하는데 있다. 사용되는 관은 평골관과 ribbed관이며 관경사각을 수평면에 대하여 0˚,22.5˚,45˚, 90˚로 변화시켰다.

2개(個)의 수직(垂直) 평판(平板)핀을 가진 전도관(傳導管)으로 부터의 자연대류(自然對流) 열전달(熱傳達) (Natural Convection Heat Transfer from a Conducting Tube with Two Vertical Axial Fins)

  • 정한식;이철재;권순석
    • 설비공학논문집
    • /
    • 제3권4호
    • /
    • pp.222-230
    • /
    • 1991
  • Conjugate heat transfer by steady laminar natural convection from a conducting tube with two vertical axial fins has been studied by a finite difference numerical procedure under basic conditions; $Ra=10_6$, Pr = 5 and $L_F=0.15$. The maximum local tube Nusselt number appears at ${\theta}=140^{\circ}$ for $L_F=0.06$, at ${\theta}=130^{\circ}$ for $L_F=0.30$ and at ${\theta}=120^{\circ}$ for $L_F=0.30$, $L_F=0.06$, respectively. The maximum mean Nusselt number shows at $L_F=0.18$ for the downward fin and at $L_F=0.12$ for the upward fin. Therefore the optimized fin length is $L_F{\approx}0.15$ under these conditions. At $L_F=0.15$, the mean Nusselt number by increasing Rayleigh number is remarkably increased for downward fin and then is slowly increased except for downward fin, it by increasing Prandtl number is apparently increased at $Pr{\leq}2$, and slightly increased at Pr>2.

  • PDF