• Title/Summary/Keyword: controlled synthesis

Search Result 625, Processing Time 0.028 seconds

Systematic Review of Herbal Medicine Fumigation Treatment for Mycotic Vaginitis (Candida Vaginitis) (진균성 질염의 한약 훈증 치료에 대한 체계적 문헌 고찰)

  • Park, Kyung-Dug;Bae, Ju-Eun;Yoon, Young-Jin
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.31 no.3
    • /
    • pp.20-32
    • /
    • 2018
  • Objectives: The purpose of this study is to identify the effectiveness of fumigation treatment, provide a clinical basis for fumigation therapy, and develop treatment protocols through consideration of treatment methods and herbal medicines. Methods: We searched for randomized controlled clinical trials using fumigation treatment on mycotic vaginitis in 8 electronic databases such as EMBASE, Pubmed, and CNKI. The results of the studies were analyzed and the risk of bias was assessed by using Cochrane risk of bias tool. A meta-analysis was performed to reveal the effectiveness of fumigation compared to control treatments. Results: We finally selected 5 studies among 54 articles according to inclusion criteria and exclusion criteria. In all selected studies, herbal fumigation was more effective than any control treatment and all the studies were statistically significant. Conclusions: The study provides a basis for applying fumigation treatment to patients with mycotic vaginitis and helps developing a treatment protocol of caring patients of mycotic vaginitis. But the limitation of this study is that the number of studies included is small and quantitative synthesis of all results has not been achieved.

Synthesis of Platinum Nanostructures Using Seeding Method

  • Han, Sang-Beom;Song, You-Jung;Lee, Jong-Min;Kim, Jy-Yeon;Kim, Do-Hyung;Park, Kyung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2362-2364
    • /
    • 2009
  • We report Pt hexapod nanoparticles with $6.4\;{\sim}\;9.7$ nm in size by a polyol process in the presence of PVP as a stabilizer and additive as a kinetic controller. The structure and morphology of Pt nanostructures are confirmed by field-emission transmission electron microscopy. The morphological control over platinum nanoparticles is achieved by varying the amount of seeds in the polyol process, where platinum precursor is reduced by ethylene glycol to form Pt nanoparticle at $150\;{^{\circ}C}$. As volume ratio between precursor-solution and seed-solution is increased from 10 to 50, the shape of Pt nanostructures is evolved from small seeds to tripod and hexapod. In addition, the size-controlled platinum hexapod nanostructures are successfully obtained using seeding method.

Sonochemical Synthesis of Amorphous Zinc Phosphate Nanospheres

  • Jung, Seung-Ho;Oh, Eu-Ene;Shim, Dae-Seob;Park, Da-Hye;Cho, Seung-Ho;Lee, Bo-Ram;Jeong, Yeon-Uk;Lee, Kun-Hong;Jeong, Soo-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2280-2282
    • /
    • 2009
  • Amorphous zinc phosphate nanospheres were prepared via a sonochemical route. Zinc phosphate nanospheres were uniform in shape with an average diameter of 210 nm. The average diameter of nanospheres could be controlled by changing the pH of a precursor solution. This sonochemical method is simple, facile, economical, and environmentally benign. Non-crystalline characteristics of as-prepared zinc phosphate nanospheres were confirmed by X-ray diffraction, transmission electron microscopy, and FT-IR spectroscopy analyses. We believe this technique will be readily adopted in realizing other forms of zinc phosphate nanostructures.

Characterization of Single-walled Carbon Nanotubes Synthesized by Water-assisted Catalytic Chemical Vapor Deposition

  • Lee, Yeon-Ja;Kim, Bawl;Yu, Zhao;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.381-381
    • /
    • 2011
  • The influence of the water vapor on the growth of single-walled carbon nanotubes (SWCNTs) was investigated. SWCNTs were synthesized by catalytic chemical vapor deposition of acetylene over Fe-Mo/MgO catalyst with injection of water vapor. The morphologies and structures of the water-assisted SWCNTs were investigated according to the growth conditions such as water vapor concentrations, flow rate of the gas, furnace temperature, and growth time. Water-assisted SWCNTs exhibited large bundle morphological features with well-alignment of each CNT, while SWCNTs synthesized in the absence of water vapor showed entangled CNT with the random orientation. We also found that the diameter of the SWCNT bundle could be controlled by the growth condition. In our optimal growth condition, the product yield and the purity were 300 wt. % and 75%, which were 7.5 and 2.5 times higher than those of SWCNTs synthesized without water vapor, respectively. More detail discussion will be offered at the poster presentation.

  • PDF

Single-Step Solid-State Synthesis of CeMgAl11O19:Tb Phosphor

  • Park, Byoung-Kyu;Lee, Seoung-Soo;Kang, Jun-Kun;Byeon, Song-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1467-1471
    • /
    • 2007
  • The green-emitting CeMgAl11O19:Tb (CMAT) phosphor has been prepared at 1200 °C by the simple solid-state reaction using AlF3 as a self-flux. This preparation temperature is much lower than those (1500-1700 °C) for conventional solid-state reaction and spray pyrolysis method. In particular, the complete process to produce high-quality phosphor particles was carried out through the single-step heat treatment of the mixture of corresponding oxide-type metal sources. An addition of AlF3 as a self-flux significantly decreased the crystallization temperature of CMAT with plate-like shape. The particle morphology could be controlled from plate-like to spherical by using H3BO3 as an additional flux. Thus, an optimal morphology and luminescence characteristics of CMAT were achieved when both AlF3 and H3BO3 fluxes were simultaneously used. Compared with conventional solid-state process, which is accompanied by the calcination step(s), and other alternative liquid solution techniques such as sol-gel method and spray pyrolysis, no use of active precursors and liquid media that are harmful to the environment is a distinctive advantage for the industrial purpose.

Green Synthesis of Ag Thin Films on Glass Substrates and Their Application in Surface-Enhanced Raman Scattering

  • Cho, Young Kwan;Kim, In Hyun;Shin, Kuan Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2942-2946
    • /
    • 2013
  • Nanostructured Ag thin films could be facilely prepared by soaking glass substrates in ethanolic solutions containing $Ag_2O$ powders at an elevated temperature. The formation of zero-valent Ag was corroborated using X-ray diffraction and X-ray photoelectron spectroscopy. The deposition of Ag onto a glass substrate was readily controlled simply by changing the reaction time. Due to the aggregated structures of Ag, the surface-enhanced Raman scattering spectra of benzenethiol could be clearly identified using the Ag-coated glass. The enhancement factor at 514.5 nm excitation estimated using benzenethiol reached $1.0{\times}10^5$ while the detection limit of rhodamine 6G was found to be as low as $1.0{\times}10^{-13}$ M. Since this one-pot fabrication method is eco-friendly and is suitable for the mass production of diverse Ag films, it is expected to play a significant role in the development of surface plasmon-based analytical devices.

Preparations of Nano-scale Mullite Powder from Solution Combustion Synthesis (용액연소합성에 의한 나노크기 물라이트 분말의 제조)

  • Lee, Sang-Jin;Yun, Jon-Do;Gwon, Hyeok-Bo;Jeon, Byeong-Se
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.797-801
    • /
    • 2001
  • In this study, the solution combustion method was employed to synthesize stoichiometric mullite, and hence the attrition process was employed to prepare ultrafine mullite particles with nano size. The thermal decomposition behavior and partial pressure of equilibrium species of both oxidizer and fuel were considered during solution combustion process. The synthesized product was mullite phase with 40 nm crystalline size, and the alumina contents of the product by TEM/EDS quantity analysis was 3.12$\pm$04 mole. The result showed that the synthesized mullite was almost close to the it's stoichiometric composition. For attrition process, the dispersion behavior of the mullite suspension was controlled and was comminuted with the condition of 800 rpm for 4 hours using 0.3 mm zirconia ball media. As a result of comminution, the mean particle size was 80 nm.

  • PDF

Sol- Gel Synthesis and Luminescent Properties of ${Y_2}{SiO_5}:Ce$ Blue Phosphors (${Y_2}{SiO_5}:Ce$ 청색 형광체의 졸-겔 합성 및 발광특성)

  • Lee, Jun;Han, Cheong-Hwa;Park, Hee-Dong;Yun, Sock-Sung
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.740-744
    • /
    • 2001
  • The $Y_2SiO_5:Ce$ phosphors were synthesized by sol-gel technique in order to improve the performance of blue emitting phosphors for field emission display(FED). The resulted$Y_2SiO_5:Ce$ phosphors enhanced the emission intensity. In addition, calcination temperature of sol-gel technique(1300~140$0^{\circ}C$) was lower than that of the solid state reaction(>1$600^{\circ}C$). Under 365 nm and low voltage electron excitations. $Ce^{3+}$ -activated $Y_2SiO_5$phosphors showed blue emission band with a range of 400~ 430nm. Especially, 2mol% $Ce^{3+}$ doped $Y_2SiO_5:Ce$phosphors showed the maximum emission intensity. We have also controlled drying temperature of wet gel, pH, and $H_2O$/TEOS molar ratio for the optimum condition of TEOS hydrolysis.

  • PDF

Effect of Process Variables and exisisting Ions on Highly Active Nano-sized ITO Powders Prepared by Precipitation Method (고활성 ITO (Indium-Tin Oxide) 나노 분말을 침전법으로 합성시의 공정 변수 및 존재하는 이온의 영향)

  • Lee, In-Gyu;Noh, Bong-Hyun
    • Journal of Powder Materials
    • /
    • v.15 no.6
    • /
    • pp.450-457
    • /
    • 2008
  • The objectives of this study were the development of a synthesis technique for highly active nanosized ITO powder and the understanding of the reaction mechanisms of the ITO precursors. The precipitation and agglomeration phenomena in ITO and $In_{2}O_{3}$ precursors are very sensitive to reaction temperature, pH, and coexisting ion species. Excessive $Cl^-$ ion and $Sn^{+4}$ ions had a negative effect an synthesizing highly active powders. However, with a relevant stabilizing treatment the shape and size of ITO and $In_{2}O_{3}$ precursors could be controlled and high density sintered products of ITO were obtained. By applying the reprecipitation process (or stabilization technique), highly active ITO and $In_{2}O_{3}$ powders were synthesized. Sintering these powders at $1500^{\circ}C$ for 5 hours produced 97% dense ITO bodies.

Synthesis and Characterization of Brilliant Yellow Color Pigments using α-FeOOH Nanorods (α-FeOOH 나노로드를 이용한 선명한 황색 안료 합성 연구)

  • Yun, JiYeon;Yu, Ri;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.453-457
    • /
    • 2016
  • In this work, we synthesize brilliant yellow color ${\alpha}$-FeOOH by controlling the rod length and core-shell structure. The characteristics of ${\alpha}$-FeOOH nanorods are controlled by the reaction conditions. In particular, the length of the ${\alpha}$-FeOOH rods depends on the concentration of the raw materials, such as the alkali solution. The length of the nanorods is adjusted from 68 nm to 1435 nm. Their yellowness gradually increases, with the highest $b^*$ value of 57 based on the International Commission on Illumination (CIE) Lab system, by controlling the nanorod length. A high quality yellow color is obtained after formation of a silica coating on the ${\alpha}$-FeOOH structure. The morphology and the coloration of the nal products are investigated in detail by X-ray diffraction, scanning electron microscopy, UV-vis spectroscopy, and the CIE Lab color parameter measurements.