• Title/Summary/Keyword: controlled synthesis

Search Result 625, Processing Time 0.026 seconds

Synthesis and Properties of Poly(BMA-co-PEGMA) Microspheres (Poly(BMA-co-PEGMA) Microsphere의 합성 및 특성)

  • Chun, Yong Jin;Cho, Suk Hyung;Lee, Gun Jik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5299-5303
    • /
    • 2013
  • Poly(butyl methacrylate-co-polyethyleneglycol methacrylate) (Poly(BMA-co-PEGMA)) microsphere was prepared by precipitation copolymerization of PEGMA and butyl methacrylate in ethanol solution. Microspheres were controlled by experimantal conditions 140nm to 210nm. The particle size of Poly(BMA-co-PEGMA) microspheres was decreased with increasing the concentration of PEGMA and increased with BMA of monomer.

Speed Control of PMSM Using a Robust Adaptive Controller (강인한 적응 제어기를 이용한 영구자석 동기 전동기의 속도 제어)

  • Kwon, Chung-Jin;Han, Woo-Yong;Lee, Chang-Goo;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.271-273
    • /
    • 2001
  • This paper presents a adaptive speed controller for field oriented controlled (FOC) permanent magnet synchronous motor (PMSM) drives. However, achieving FOC requires machine specific knowledge, and tracking of drifting motor parameters in order to maintain control. The proposed controller based on Minimum Controller Syntheses (MCS) algorithm does not require exact knowledge of motor parameters. This controller structure simplifies the design and implementation of the adaptive controller requiring less effort to synthesis than a standard MRAC system. Simulation results using Matlab/Simulink show that the proposed controller has good dynamic performances and it is insensitive to parameter variations.

  • PDF

Synthesis and Luminescent Properties of Blue Light Emitting Polymers Containing a 4,4' or 3,3'-Linked Biphenyl Unit

  • Ahn, Taek
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.317-321
    • /
    • 2012
  • Poly[4,4'(3,3')-biphenylenevinylene-alt-2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene], 4,4'(3,3')-PBPMEH-PPV, and poly[4,4'(3,3')-biphenylenevinylene-alt-N-ethylhexyl-3,6-carbazolevinylene], 4,4'(3,3')-PBPCAR-PPV, of varying effective conjugation lengths, were synthesized by the well-known Wittig condensation polymerization between the appropriate biphenyl diphosphonium salts and dialdehyde monomers such as carbazole or dialkoxyphenyl dialdehyde. The conjugation lengths of the polymers were controlled by biphenyl linkages (4,4' or 3,3'). The resulting polymers were highly soluble in common organic solvents and exhibited good thermal stability up to $300^{\circ}C$. The synthesized polymers showed UV-visible absorbance and photoluminescence (PL) in the ranges of 314-400 nm and 430-507 nm, respectively. Carbazole and 3,3'-biphenyl containing 3,3'-PBPCAR-PPV showed a blue PL peak at 430 nm. A single-layer light-emitting diode was fabricated in a configuration of ITO/polymer/Al. Electroluminescence (EL) emission of 3,3'-PBPCAR-PPV was shown at 455 nm.

Synthesis of Silver Nanoparticles from the Decomposition of Silver(I) [bis(alkylthio)methylene]malonate Complexes

  • Lee, Euy-Jin;Piao, Longhai;Kim, Jin-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.60-64
    • /
    • 2012
  • Silver(I) [bis(alkylthio)methylene]malonates were synthesized from the reaction of silver nitrate and potassium [bis(alkylthio)methylene]malonates. The structures of the Ag complexes were characterized with nuclear magnetic resonance (NMR), inductively coupled plasma atomic emission spectrometry (ICP-AES) and elemental analysis. Ag nanoparticles (NPs) were obtained from the decomposition of the Ag complexes in 1,2-dichlorobenzene at $110^{\circ}C$ without an additional surfactant. The average sizes of the Ag NPs are in the range of 5.1-6.3 nm and could be controlled by varying the length of the alkyl chain. The optical properties, crystalline structure and surface composition of Ag NPs were characterized with ultraviolet-visible (UV-visible) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), gas chromatography-mass spectrometry (GC-MS), X-ray Photoelectron Spectroscopy (XPS) and thermal gravimetric analysis (TGA).

High performance organic gate dielectrics for solution processible organic and inorganic thin-film transitors

  • Ga, Jae-Won;Jang, Gwang-Seok;Lee, Mi-Hye
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.64.1-64.1
    • /
    • 2012
  • Next generation displays such as high performance LCD, AMOLED, flexible display and transparent display require specific TFT back-planes. For high performance TFT back-planes, low temperature poly silicon (LTPS), and metal-oxide semiconductors are studied. Flexible TFT backplanes require low temperature processible organic semiconductors. Not only development of active semiconducting materials but also design and synthesis of semiconductor corresponding gate dielectric materials are important issues in those display back-planes. In this study, we investigate the high heat resistant polymeric gate dielectric materials for organic TFT and inorganic TFT with good insulating properties and processing chemical resistance. We also controlled and optimized surface energy and morphology of gate dielectric layers for direct printing process with solution processible organic and inorganic semiconductors.

  • PDF

The synthesis of Highly Crystalline and monodisperse maghemite and zirconia Nanocrystallites without size-selection process

  • Park, Jong-Nam;Joo, Jin;Yoo, Tae-kyung;Na, Hyun-Bin;Lee, Soo-Sung;Park, Hyun-Min;Kim, Young-Woon;Hyun, Taek-Hwan
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2003.05a
    • /
    • pp.20-20
    • /
    • 2003
  • A new and simple method has been developed to synthesize highly crystalline and monodisperse maghemite (γ-Fe₂O₃) and zirconia (ZrO₂) nanocristallites. High temperature aging of metal-surfactant complex was founded to generate monodisperse nanoparticles, wherein the nuclei were prepared by the thermal decomposition of iron-oleate complex in case of iron oxide and nonhydrolytic sol-gel reaction in case of zirconia respectively. By varying the experimental conditions, in other words concentration of surfactants, kind of metal precursor, reaction temperature and so on, the diameter of spherical nanoparticles could be controlled at various size. The synthesized nanoparticles were characterized by electron diffraction, X-ray diffraction, and low- and high-resolution transmission electron microscope.

  • PDF

THE ART of SHEET FORMING SIMULATION TECHNOLOGY in JAPAN

  • Nakamachi, Ei-Ji
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.7-34
    • /
    • 1994
  • ;Recently the sheet forming simulation technology revealed great progress in the sense of practical application in the automotive, electric/electronics and aviation/space industries. The goal of sheet forming simulation is to embedded in the design engineering system which is consisted by the analysis and synthesis modules. This design simulation system predicts the slackness of sheet and estimate the formability, and search the optimum material/forming/structure conditions. This OVER-ALL OPTIMUM DESIGN can be classified as follow; 1. ANALYZING PROCEDURE: Numerical simulation based on nonlinear theories -geometry, material and friction nonlinearities- 2. OPTIMIZATION PROCEDURE: Optimum design based on mathematical programing and AI technologies, those are implemented in CAD/CAM/CAE System - Concurrent Engineering System-. In this paper, four subjects will be discussed; (1) State of arts of computer simulation technologies in Japan. (2)History of sheet forming simulation. (3) Benchmark problems. (4) Future technology in the sheet forming simulation.ation.

  • PDF

Electromagnetic Properties of Siver Coated Iron based Alloy Powders Prepared by Chemical Reduction Method

  • Lee, Byoung-Yoon;Lee, Jae-Wook;Yun, Yeo-Chun;Jeong, In-Bum;Moon, Joo-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1213-1214
    • /
    • 2006
  • The synthesis of silver coated iron base alloy (Sendust : Fe-Si-Al) powder having the both effects of shielding and suppressing of electromagnetic wave was studied. Depending on thickness of silver coating layer, the electromagnetic properties of the dispersed particles complexed with organic binder were examined. It is proposed that the silver coated sendust flake powders with controlled electrical properties and thickness can be used as thin microwave absorbers in quasi-microwave frequency band.

  • PDF

Synthesis and Characteristics of FePt Nanopowder by Chemical Vapor Condensation Process

  • Yu, Ji-Hun;Lee, Dong-Won;Kim, Byoung-Kee;Jang, Tae-Suk
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1196-1197
    • /
    • 2006
  • FePt binary-alloy nanopowder has been successfully synthesized by chemical vapor condensation process with two metal organic precursors, i.e., iron pentacarbonyl and platinum acetylacetonate. Average particle size of the powder was less than 50 nm with very narrow size distribution, revealing high dispersion capability. Characteristics of the powder could be controlled by changing process parameters such as reaction temperature, chamber pressure, as well as gas flow rate. Magnetic properties of the synthesized FePt nanopowder were investigated and analyzed in terms of the powder characteristics.

  • PDF

Phase Transformation Behavior of Bi2O3-ZnO-Nb2O5 Ceramics sintered at low Temperature

  • Shiao, Fu-Thang;Ke, Han-Chou;Lee, Ying-Chieh
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1232-1233
    • /
    • 2006
  • To co-fire with commercial LTCC (Low Temperature Co-fired Ceramic) materials at $850^{\circ}C{\sim}880^{\circ}C$, different contents of $B_2O_3$ were added to the $Bi_2O_3-ZnO-Nb_2O_5$ (BZN) ceramics. According to the test results, the cubic phase of BZN was transformed into orthorhombic in all the test materials. $BiNbO_4$ phase was formed in test materials with $2{\sim}5wt%$ of $B_2O_3$ addition. The phase transformation of cubic BZN was controlled during the synthesis process with excess ZnO content. The Cubic and orthorhombic phases of BZN could coexist and be sintered densely at $850^{\circ}C/2hr$.

  • PDF