Poly(BMA-co-PEGMA) Microsphere의 합성 및 특성

전용진^{1*}, 조석형², 이건직³ ¹청운대학교 화장품과학과, ²혜전대학교 소방안전관리과, ³국민대학교 교양학부

Synthesis and Properties of Poly(BMA-co-PEGMA) Microspheres

Chun Yong Jin^{1*}, Cho Suk Hyung² and Lee Gun Jik³

¹Department of Cosmetic Science, Chungwoon University ²Department of Fire Safety and Management, Hyejeon College ³Dept. of General Education, Kookmin University

요 약 Poly(butyl methacrylate-co-polyethyleneglycol methacrylate)(Poly(BMA-co-PEGMA)) microsphere은 침전중합법 으로 에탄올 용액에서 제조하였으며 마이크로스페어의 입자 크기는 모노머인 BMA와 PEGMA의 농도조건에 따라 140-210nm까지 조절 할 수 있었다. PEGMA의 농도가 증가할 수록 마이크로스페어의 크기가 작아지는 반면 BMA의 농도가 증가하면 마이크로스페어의 입자크기가 증가하였다.

Abstract Poly(butyl methacrylate-co-polyethyleneglycol methacrylate) (Poly(BMA-co-PEGMA)) microsphere was prepared by precipitation copolymerization of PEGMA and butyl methacrylate in ethanol solution. Microspheres were controlled by experimantal conditions 140nm to 210nm. The particle size of Poly(BMA-co-PEGMA) microspheres was decreased with increasing the concentration of PEGMA and increased with BMA of monomer.

Key Words : Microsphere, Precipitation polymerization, Poly(BMA-co-PEGMA) microsphere,

1. 서 론

고분자 마이크로스페어는 구형 미립자로서 입자크기 가 작고 다공성이며 비표면적이 클 뿐만 아니라 저점도 특성을 가지고 있다. 고분자 마이크로스페어는 기능성이 다양하기 때문에 이에 관한 응용 연구가 많이 진행되고 있다[1-4]. 고분자 마이크로스페어의 제조방법으로 최근 에 많이 이용되는 방법으로써 반응성이 작은 라디칼 입 자 내에서 국소적으로 반응을 진행시는 에멀젼 중합방법 이나[3], 희박용매를 사용하여 중합시킴으로써 극히 희박 한 용액에서 분자 내 가교반응에 의해 마이크로스페어를 제조하는 방법이 있다[5]. Shashoua 등은 스티렌, 아크릴 로니트릴 또는 메틸메타아크릴레이트 공중합체를 에멀젼 중합으로 합성하였고[6], Funke 등은 디비닐계 모노머를 에멀젼 중합으로 공 중합하여 불균일 망상구조 내에 가 교된 마이크로스페어를 제조하였다[7,8]. Antonietti 등은 마이크로스페어를 제조하기 위하여 스티렌과 m-디이소 프로페닐벤젠을 마이크로 에멀젼화시킨 후, 라디칼 공중 합하여 작은 입자의 마이크로스페어를 제조하였다[9,10]. 전형적인 겔화 이론에 의하면 2개 이상의 관능성을 가 지는 모노머의 중합으로 생성되는 마이크로스페어는 용 매에 용해되지 않으나, 에멀젼 중합에 의한 국소적인 반 응이나 희박용액에서의 분자 내 반응으로 생성되는 초미 립자의 마이크로스페어는 용해된 것처럼 용액 중에 분산 되는 특징을 갖고 있다. 그러나 에멀젼 중합은 입자 크기 가 비교적 크고 유화제 등의 오염이 불가피하므로 응용 분야가 제한적이다. 또한 희박용액에서의 중합방법은 고 농도의 마이크로스페어를 얻을 수 없다는 단점을 가지고 있다. 이러한 방법 외에도 계면중합법, 초음파를 이용한 분해법, 방사선에 의한 가교중합법 등이 보고된 바 있다

본 연구는 청운대학교 2008년 학술연구조성비 지원사업으로 수행되었읍니다

Tel: +82-10-2456-1623 email: csh111@hanmail.net

^{*}Corresponding Author : Yong-Jin Chun(Chungwoon Univ.)

Received May 24, 2013 Revised (1st June 21, 2013, 2nd September 12, 2013, 3rd October 9, 2013) Accepted October 10, 2013

[11-13]. 이러한 방법으로는 마이크로스페어를 고수율로 저렴하게 얻을 수 없다는 문제점이 지적되고 있다.

최근에 Graham과 Mao 등[14,15]은 고수율의 마이크 로스페어를 제조할 수 있는 방법으로 용액중합 방법을 제안하였다. 고수율의 마이크로스페어를 얻는데 필요한 주요 인자로 다섯 가지를 제시하였다. 즉 마이크로스페어 표면에서 자체-입체적 안정화 과정, 고분자 사슬간의 열 역학적 상호작용의 힘, 마이크로스페어 입자의 팽윤성과 임계 충진 농도 및 고분자 형성과정에 참여한 반응기들 의 반응성 등 이라고 보고하였다[16].

본 연구에서는 아크릴계 수지를 주재로 그라비아 인쇄 용 포토레지스트의 기본 수지를 합성하는데 있어서 새로 운 방법으로 고분자 마이크로스페어를 합성하였으며 그 에 대한 물성을 시험하였다.

2. 실 험

2.1 시약 및 재료

모노머인 polyethyleneglycol methacrylate (DP=10) (PEGMA), Butyl methacrylate(BMA)는 Aldrich제 시약을 그대로 사용하였으며 MEK, DMF, chloroform 등은 구입 한 그대로 사용하였다.

2.2 Poly(BMA-co-PEGMA) microsphere의 합성

Butyl methacrylate(BMA), polyethylene glycol methacrylate (PEGMA)의 비율을 달리하면서 에탄올를 용매로 사용하 여 용액 내에서 마이크로스페어를 합성하였다. 합성한 마이크로스페어의 형태를 조사하기 위하여 SEM으로 관 찰하였으며 코일농도, 겔 포인트 등을 측정하였다.

2.3 입자 크기 및 분포 측정.

건조시킨 분말 시료를 grid 위에 얇게 펼친 후 gold coating하여 SEM (Hitachi S-2500C)으로 입자의 크기와 형태를 관찰하였다. 또한 입자의 분포를 측정하기 위하여 고분자 마이크로스페어를 에탄올에 0.1 wt% 이하로 분산 시킨 후 입자크기분석기(ELZONE 280PC)로 입자의 크기 와 분포를 관찰하였다.

3. 결과 및 고찰

그라비아 인쇄용 포트레지스트을 제조하는 기초수지

를 합성하는데 있어서 마이크로스페어 형 수지를 합성하 게 되었다.

본 연구는 마이크로스페어을 합성하는 새로운 방법으 로 용액 내에서 자체 안정화제에 이용하여 안정한 고분 자 미립자를 만드는 방법을 사용하였다.

고분자 마이크로스페어는 Fig. 1 에서 보는 바와 같은 메카니즘으로 제조된다.

PEGMA 및 BMA의 비율을 달리하면서 90/10 - 10/90 으로 조절하고, 에탄올에서 0.1 wt% AIBN 촉매 존재 하 에 용액중합 방법으로 마이크로스페어를 합성한 결과는 Table 1과 Fig. 2와 같다. 여기에서 보는 바와 같이 BMA/PEGMA의 몰 비를 변화시키며 마이크로스페어를 합성한 결과, 140 내지 210nm의 크기를 갖는 미립자를 얻을 수 있었다. BMA/PEGMA의 몰 비를 변화시키며 마 이크로스페어를 합성한 결과 Table 1에서와 같이, PEGMA의 몰 비가 감소할수록 입자크기가 증대되었다.

[Fig. 1] Preparation mechanism of polymer microspheres by self-stabilizer.

Sample code	BMA/PEGMA (mole ratio)	Conversion (%)	[ŋ] ^{a)} (dL/g)	Coil density ^{b)} (g/dL)	Particle size(nm)
MG-1	90/10	97.0	0.0411	60.83	212
MG-2	70/30	95.0	0.1380	18.12	205
MG-3	50/50	95.7	0.2376	10.52	197
MG-4	30/70	93.4	0.2741	9.12	138

[Table 1] Preparation and Characteristics of Poly(BMA-co-PEGMA) Microspheres

a) Intrinsic viscosities determined in Chloroform at $25\,{}^\circ\!\!\mathbb{C}$

용액중합 방법에 의한 고분자 마이크로스페어의 합성 은 Table 2에서 보인 바와 같이, 용매에 용해되어 있는 모 노머가 중합이 진행됨에 따라 핵이 형성되고 형성된 핵 내부에서는 소수성인 BMA에 의해 고분자화가 진행된다. 또한 모노머로 사용한 폴리올 사슬이 입자표면에서 자체 안정화제 역할을 부여하여 입자간의 결합을 제한하고 분

b) Coil density calculated from intrinsic viscosity using Einstein eq. [η]=2.5/ ρ

자 내 고분자화 반응으로 용액 내에서 독립된 구형의 입 자형태를 유지하면서 초미립자의 고분자 마이크로스페어 를 형성한다.

총 모노머의 함량이 증가함에 따라 전체적으로 전환율 은 증가하는 경향을 나타내었다. 또한 BMA의 함량이 증 가함에 따라 마이크로스페어의 전환율은 Fig. 3와 같이 증가하는 경향을 보였으며 고유점도는 감소하였고 코일 밀도는 증가하였다. 이 코일밀도는 core에 BMA의 농도 가 증가하면 용매인 에탄올에 대한 상용성이 감소되어 코일밀도가 증가하게 된는 것으로 추정된다.

[Fig. 2] SEM images of poly(BMA-co-PEGMA) microspheres

BMA/PEGMA의 조성비가 다른 마이크로스페어의 임 계 겔화 농도는 PEGMA의 함량이 증가함에 따라 Fig. 4 와 같이 증가하였으며, 이는 마이크로스페어를 형성하는 데 있어서 친수성인 PEG 세그멘트가 용액 내에서 입자 의 자체 안정화의 기능을 발현하는 능력이 소수성인 BMA보다 초기단계에서 우수하여 입자간 응결를 저지하 며 모노머의 농도가 높은 고 농도에서도 균일한 크기의 마이크로스페어가 잘 형성되었다.

PEGMA의 양의 변화에 따른 마이크로스페어의 입자 형성에 대한 영향을 조사하였다. Table 2와 Fig. 5에서 보 는 바와 같이 입자의 코일 밀도가 모노머의 농도가 증가 함에 따라 감소하는 경향을 나타내었으며 점도는 증가하 는 경향을 나타내었다. 이는 BMA와 PEGMA의 공중합 체에서 PEGMA의 양이 증가함에 따라 용매에 대한 상용 성이 증가하여 상대적으로 입자의 부피가 증대되기 때문 이라고 생각된다.

[Table 2] Properties of Poly(BMA-co-PEGMA) Microspheres on BMA Monomer Concentration

Sample code	BMA conc. (%)	[1]] ^{a)} (dL/g)	Coil density ^{b)} (g/dL)	Tm(℃)	Particle size(nm)
BG-3	2.5	0.0785	31.8	230	115
	5.0	0.0972	25.7	205	132
	7.5	0.1235	20.2	205	150
	10.0	0.1518	16.4	172	168
	12.5	0.2376	10.5	165	197

a) Intrinsic viscosities determined in Chloroform at 25°C

b) Coil densities calculated from intrinsic viscosity using Einstein eq. $[\eta] = 2.5/\rho$

[Fig. 3] Conversion of poly(BMA-co-PEGMA) microspheres prepared with various BMA/PEGMA mole ratio.

[Fig. 4] Coil density of poly(BMA-co-PEGMA) microspheres at critical gel concetration.

[Fig. 5] Coil density of poly(BMA-co-PEGMA) microspheres prepared with various concetration of PEGMA

4. 결 론

본 연구는 Poly(BMA-co-PEGMA) 마이크로스페어 초미립자를 고수율로 얻을 수 있는 제조 방법으로서 BMA, PEGMA 모노머를 에탄올용액 중에서 침전 중합 시켜 균일한 크기의 마이크로스페어를 얻을 수 있었다. 그 결과 다음과 같은 결론을 얻었다.

- 침전중합법에 의해 합성한 poly(BMA-co -PEGDMA) 마이크로스페어는 모노머의 농도와 모노머의 비율 및 자체 안정제인 PEGMA의 농도에 따라 마이크로 스페어의 평균 크기를 약 140-210nm의 크기로 조 절할 수 있었다.
- 입자의 코일 밀도가 PEGMA 모노머의 농도가 증가 함에 따라 감소하는 경향을 나타내었으며 점도는 증가하는 경향을 나타내었다.
- 3. PEGMA 모노머의 농도가 증가함에 따라 poly (BMA-co-EGDMA) 마이크로스페어의 입자 크기는 감소하였고 모노머인 BMA의 양이 증가할수록 입 자의 크기는 증가하였다.

References

- S. Abrol, P. A. Kambouris, M. L. Looney, and D. H. Solomon, *Macromol. Rapid Commun.*, 18, 755 (1997) DOI: http://dx.doi.org/10.1002/marc.1997.030180901
- [2] H. Tobita and Y. Uemura, J. Polym. Sci. Part B: Polym. Physics, 34, 1403 (1996)
 DOI: <u>http://dx.doi.org/10.1002/(SICI)1099-0488(199603)</u> 34:4<671::AID-POLB7>3.0.CO;2-T
- [3] K. S. Kim, S. H. Kang, and J. M. Kim, J. of Korean Ind. & Eng. Chemistry, 9, 591 (1998)
- [4] D. Kunz and W. Burchard, *Colloid & Polymer Sci.*, 264, 498 (1986)
 DOI: http://dx.doi.org/10.1007/BF01422003
- [5] Y. Naka and Y. Yamamoto, J. Polym. Sci., Part A : Polymer Chem., 30, 2149 (1992).
 DOI: <u>http://dx.doi.org/10.1002/pola.1992.080301008</u>
- [6] V. E. Shashoua and R. G. Beaman, J. Polymer Sci., 33, 101 (1958)
 DOI: http://dx.doi.org/10.1002/pol.1958.1203312647
- [7] W. Funke, Brithsh Polym. J., 21, 107 (1989)
- [8] W. Funke and K. Walthe, *Polymer J.* 17, 179(1985)
 DOI: http://dx.doi.org/10.1295/polymj.17.179
- [9] M. Antonietti and H. Sillescu, *Macromolecules*, 19, 798 (1986)
 DOI: http://dx.doi.org/10.1021/ma00157a051

- [10] M. Antonietti and W. Bremser, *Macromolecules*, 23, 3796 (1990)
 DOI: http://dx.doi.org/10.1021/ma00218a014
- [11] H. Chen, K. Ishizu, T. Fukutomi, and T. Kakurai, J. Polym. Sci., Polym. Chem. Ed., 22, 2123 (1984)
 DOI: http://dx.doi.org/10.1002/pol.1984.170221138
- [12] K. S. Kim, C. H. Cho, and M. W. Park, *Polym. International*, 27, 350 (1992)
 DOI: http://dx.doi.org/10.1002/pi.4990270304
- [13] Y. Naka, I. Ketsu, Y. Yamamoto, and K. Hayashi, J. Polym. Sci.,Part A : Polymer Chem., 29, 1197 (1991) DOI: http://dx.doi.org/10.1002/pola.1991.080290814
- [14] N. B. Graham and C. M. G. Hayes, *Macromol. Symp.*, 93, 293 (1995)

DOI: http://dx.doi.org/10.1002/masy.19950930135

- [15] N. B. Graham and J. Mao, Colloid & Surface A-Physicochemical & Engineering Aspects, 118, N.3 (1996)
- [16] K. S. Kim and Neil. B. Graham, J. Ind. Eng. Chem., 4, 221 (1998)

전 용 진(Yong-Jin Chun) [종신회원]

- 1994년 2월 : 고려대학교 화학공 학과 (공학박사)
- 1986년 7월 ~ 1994년 2월 : KIST 연구원
- 1994년 3월 ~ 1997년 2월 : 혜 전대학 공업화학과 교수
- 1997년 3월 ~ 현재 : 청운대학교 화장품과학과 교수

<관심분야> 유기합성, 친환경소재, 화장품학

조석형(Suk-Hyung Cho)

[정회원]

- 1994년 8월 : 충북대학교 화학공 학과 (공학박사)
- 1995년 9월 ~ 현재 : 혜전대학교 소방안전과 교수

<관심분야> 능성 고분자, 기능성 다당, 식품첨가제, 화장품소재 이 건 직(Gun-Jik Lee)

[정회원]

- 1991년 8월 : 고려대학교 화학공 학과(공학박사)
- 1995년 3월 ~ 1997년 7월 : 진 응산업 연구소장
- 2013년 3월 ~ 현재 : 국민대학교 교양과정부 부교수

<관심분야> 무기공업 및 환경재료, 화장품화학