• 제목/요약/키워드: controlled rolling

검색결과 155건 처리시간 0.028초

높은 변형능을 갖는 저탄소 베이나이트계 고강도강의 미세조직과 기계적 특성 (Microstructure and Mechanical Properties of High-Strength Low-Carbon Bainitic Steels with Enhanced Deformability)

  • 황병철
    • 한국재료학회지
    • /
    • 제23권8호
    • /
    • pp.423-429
    • /
    • 2013
  • Recently, steel structures have increasingly been required to have sufficient deformability because they are subjected to progressive or abrupt displacement arising from structure loading itself, earthquake, and ground movement in their service environment. In this study, high-strength low-carbon bainitic steel specimens with enhanced deformability were fabricated by varying thermo-mechanical control process conditions consisting of controlled rolling and accelerated cooling, and then tensile and Charpy V-notch impact tests were conducted to investigate the correlation between microstructure and mechanical properties such as strength, deformability, and low-temperature toughness. Low-temperature transformation phases, i.e. granular bainite (GB), degenerate upper bainite(DUB), lower bainite(LB) and lath martensite(LM), together with fine polygonal ferrite(PF) were well developed, and the microstructural evolution was more critically affected by start and finish cooling temperatures than by finish rolling temperature. The steel specimens start-cooled at higher temperature had the best combination of strength and deformability because of the appropriate mixture of fine PF and low-temperature transformation phases such as GB, DUB, and LB/LM. On the other hand, the steel specimens start-cooled at lower temperature and finish-cooled at higher temperature exhibited a good low-temperature toughness because the interphase boundaries between the low-temperature transformation phases and/or PF act as beneficial barriers to cleavage crack propagation.

냉간압연한 고 Mn 오스테나이트계 스테인리스강의 기계적 성질에 미치는 서브제로처리의 영향 (Effect of Subzero Treatment on the Mechanical Properties of Cold-Rolled High Manganese Austenitic Stainless Steel)

  • 황태현;정목환;이종영;이향백;강창룡
    • 열처리공학회지
    • /
    • 제25권5호
    • /
    • pp.233-238
    • /
    • 2012
  • The effect of subzero treatment on the mechanical properties of cold rolled high manganese austenitic stainless steel was investagated. ${\alpha}$'-martensite was formed by cold rolling, and it was formed with surface relief and specific direction or crossing each other. The volume fraction of martensite increased by subzero treatment, and it was increased with longer time of subzero treatment and higher temperature of subzero treatment. The hardness and strength increased by subzero treatment, while the elongation decreased. With the increase of volume fraction of martensite, the hardness and strength was increased steeply with proportional relationship, elongation was decreased slowly. The results show that the hardness and strength was strongly controlled by the volume fraction of martensite, and the elongation was affected by transformation behavior of deformation induced martensite in the initial stage of deformation.

A Proposal of Wheel/Rail Contact Model for Friction Control

  • Matsumoto Kosuke;Suda Yoshihiro;Komine Hisanao;Nakai Takuji;Tomeoka Masao;Shimizu Kunihito;Tanimoto Masuhisa;Kishimoto Yasushi;Fujii Takashi
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.437-443
    • /
    • 2005
  • Controlling the friction between wheel and rail is direct and very effective measures to improve the curving performances of railway trucks, because the curving performances depend much on friction characteristics. Authors have proposed a method, 'friction control', which utilizes friction modifier ($KELTRACK^{TM}$ HPF) with onboard spraying system. With the method, not only friction coefficient, but also friction characteristics can be controlled as expected. In this study, MBD simulation is very valuable tool to foresee the effect of the control in advance of experiment with real car. And the creep characteristics of wheel/rail contact with the friction modifier takes very important role in the simulation. In this paper, authors propose a theoretical model of wheel/rail contact condition considering the creep characteristics of friction modifier, which is derived the application of principle tribological theories.

냉각압연 가공용 자동 형상제어장치의 특성에 관한 연구 (A Study on the Characteristics of Automatic Flatness Control System for Cold Rolling)

  • 김문경;전언찬;김순경
    • 대한기계학회논문집A
    • /
    • 제20권9호
    • /
    • pp.2901-2907
    • /
    • 1996
  • Flatness of cold rolled strip is vital to the quality of the product and productivity of the mill. Therefore, in recent year requirement for flatness control in strip rolling have become increasingly severe. The necessity for more accurate automatic gauge control and automatic flatness control(AFC) has increased by customer's requirement for cold rolled steel sheets with thinner gauge and better flatness quality. In this paper, the performance and functions of AFC system installed on the 4 hi-reversing mill has been investigated under actual conditions. The test results are as follows : The more strip thickness is thick, the smaller the I-value. The I-value is a strain measured by stressometer. Complex distributions of strip tension are controlled to remove not only a quarter buckle but also a simple center wave and edge wave. The defects caused by poor flatness have been drastically decreased. And a proper coolant temperature for work roll cooling system on the AFC system is about $50~55^{\circ}C$.

마찰에너지율을 이용한 타이어 제동거리 예측 (Braking Distance Estimation using Frictional Energy Rate)

  • 전도형;최주형;조진래;김기전;우종식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.519-524
    • /
    • 2004
  • This study is concerned with the braking distance estimation using frictional energy rate. First, steady state rolling analysis is performed, and using this result, the braking distance is estimated. Dynamic rolling analysis during entire braking time period is impratical, so that this study divides the vehicle velocity by 10km/h to reduce the analysis time. The multiplication of the slip rate and the shear stress provides the frictional energy rate. Using frictional energy rate, total braking distance is estimated, In addition, ABS(Anti-lock Brake System) is considered, and two type of slip ratios are compared, One is 15% slip ratio for the ABS condition, and the other is 100% slip ratio which leads lo the almost same braking distance as the elementary kinematic theory. A slip ratio is controlled by angular velocity in ABAQUS/Explicit, A 15% slip ratio gives the real vehicle's braking distance when the frictional energy occurred al disk pad is included. Disk pad's frictional energy rate is calculated by the theoretical approach.

  • PDF

A study on the TiN coating applied to a rolling wire probe

  • Song, Young-Sik;S. K. Yang;Kim, J.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2003년도 추계학술발표회초록집
    • /
    • pp.118-118
    • /
    • 2003
  • In a rolling wire probe, a key component of an inspection apparatus for PDP electrode patterns, the electric performance of it is known to be strongly dependent on the surface condition of a collet pin, a needle pin, and a wire. However, the collet and needle pins rotate very rapidly in contact with each other, which results in the degradation of the surface by the heat and friction and finally the formation of black wear marks on the surface after a several hundred hours test. Once the black wear marks appear on the surface, the electric resistance of the probe increases sharply and so the integrity of the probe is severely damaged. In this experiment, TiN coating, which has excellent electric conductances and good wear-resistance, has been applied on the surface of collect and needle pins for preventing the surface damages. In order to achieve the homogeneous coating with a good adhesion property, special coating substrate stages and jigs were designed and applied during coating. TiN has been deposited using 99.999% Titanium target by a DC reactive sputtering method. According to the components and jigs, processing parameters, such as DC power, RF bias and the flow rate ratio of Ar and N$_2$ used as reactive gases, has been controlled to obtain good TiN films. Detailed problems and solutions for applying the new substrate stages and jigs will be discussed.

  • PDF

연료전지 발전시스템을 이용한 축소형 철도차량의 운전곡선 추종에 따른 추진제어장치 특성 고찰 (A Study on Propulsion Control Device Characteristics of Small-scale Electric Railway Vehicle according to Driving Curve Tracking using Fuel Cell Generation System)

  • 정노건;창상훈;김재문
    • 전기학회논문지
    • /
    • 제64권12호
    • /
    • pp.1804-1809
    • /
    • 2015
  • The study in railway system to apply a fuel cell system with high efficiency and mobility than other renewable energy is being actively conducted. It is needed a analysis on load characteristics and control method of rolling stock in order to apply to rolling stock. This paper presents study on control small-scale prototype power converter electric railway vehicle using fuel cell generation system. Experiment is conducted through real fuel cell generation system and reference speed applying the driving curve of the actual electric railway vehicle was applied. Also, output voltage of boost converter is controlled considering characteristic of fuel cell. And it was confirmed characteristic according to powering and regeneration of inverter.

Optimal Scheduling of Electric Vehicles Charging in low-Voltage Distribution Systems

  • Xu, Shaolun;Zhang, Liang;Yan, Zheng;Feng, Donghan;Wang, Gang;Zhao, Xiaobo
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.810-819
    • /
    • 2016
  • Uncoordinated charging of large-scale electric vehicles (EVs) will have a negative impact on the secure and economic operation of the power system, especially at the distribution level. Given that the charging load of EVs can be controlled to some extent, research on the optimal charging control of EVs has been extensively carried out. In this paper, two possible smart charging scenarios in China are studied: centralized optimal charging operated by an aggregator and decentralized optimal charging managed by individual users. Under the assumption that the aggregators and individual users only concern the economic benefits, new load peaks will arise under time of use (TOU) pricing which is extensively employed in China. To solve this problem, a simple incentive mechanism is proposed for centralized optimal charging while a rolling-update pricing scheme is devised for decentralized optimal charging. The original optimal charging models are modified to account for the developed schemes. Simulated tests corroborate the efficacy of optimal scheduling for charging EVs in various scenarios.

탄탈륨 판재의 어닐링 집합조직과 결정립 크기 (Annealing Textures and Grain Size of Tantalum Sheet)

  • 강전연;박성원;박준영;박성준;송이화;박성택;김광련;오경원
    • 소성∙가공
    • /
    • 제28권5호
    • /
    • pp.247-256
    • /
    • 2019
  • In this study, the development of annealing textures in cold rolled and annealed tantalum sheets was analyzed using electron backscatter diffraction. At $900^{\circ}C$, the textures of the recrystallized grains in the partially and completely recrystallized microstructures displayed significant similarities. The average diameter of the recrystallized grains with ${\gamma}-fiber$ orientations exceeded that of grains with different orientations, and the average growth rates were unrelated to the orientations after an initial stage of recrystallization. Additional cold rolling and annealing was done for controlled initial microstructures and textures inherited from various processes of prior cold rolling and annealing. This second cycle of the process resulted in stronger textures with major ${\gamma}-fiber$ orientations as a result of the enhanced ${\gamma}-fiber$ orientations in the preceding textures. A coarse-grained prior microstructure resulted in a weaker annealing texture than a fine grained one regardless of the stronger previous texture, which was occasioned by the sub-structures of the minor orientations at local deformation inhomogeneities such as sharp in-grain shear bands.

접촉식 자동 형상제어 장치의 특성에 관한 연구 (A Study on Characteristics of Automatic Flatness Control System of Contact Type)

  • 김문경;전언찬;김순경
    • 한국정밀공학회지
    • /
    • 제13권5호
    • /
    • pp.67-73
    • /
    • 1996
  • The necessity for more accurate automatic flatness control(AFC) system has increased of customers' requirement for cold rolled steel sheet. Therefore, many cold rolling mills replaced its AFC system with a measuring roll of the contact type form the non-contact type. In this paper. The performance of AFC system of contact type has been investigated under industrial conditions. It has two kinds of actuator: roll bender, spot cooling system. The test results are as follows: The more strip thickness is thick, the smaller the I value, and the more it is thin, the bigger the I value. And a complex distribution of strip tension was controlled, for example, not only a pocket wave but also a simple center wave and edge wave. Because the tension deviation is larger at acceler- ation speed and decelerationspeed than steady speed, AFC system of contact type is better to adopt over 50m/mim. AFC system reduces rapidly large flatness deviation. The maximum I value of strip has been decreased to 13 I, and sticker, defects caused by poor flatness, have been decreased about 60%.

  • PDF