• 제목/요약/키워드: control gain

Search Result 4,542, Processing Time 0.029 seconds

A 6 Gb/s Low Power Transimpedance Amplifier with Inductor Peaking and Gain Control for 4-channel Passive Optical Network in 0.13 μm CMOS

  • Lee, Juri;Park, Hyung Gu;Kim, In Seong;Pu, YoungGun;Hwang, Keum Cheol;Yang, Youngoo;Lee, Kang-Yoon;Seo, Munkyo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.122-130
    • /
    • 2015
  • This paper presents a 6 Gb/s 4-channel arrayed transimpedance amplifiers (TIA) with the gain control for 4-channel passive optical network in $0.13{\mu}m$ complementary metal oxide semiconductor (CMOS) technology. A regulated cascode input stage and inductive-series peaking are proposed in order to increase the bandwidth. Also, a variable gain control is implemented to provide flexibility to the overall system. The TIA has a maximum $98.1dB{\Omega}$ gain and an input current noise level of about 37.8 pA/Hz. The die area of the fabricated TIA is $1.9mm{\times}2.2mm$ for 4-channel. The power dissipation is 47.64 mW/1ch.

Cutting Torque Control in Drilling Part 1 : Design of a Cutting Torque Controller (드릴 공정시 절삭 토크 제어 제 1 편 : 절삭 토크 제어기의 설계)

  • O, Yeong-Tak;Gwon, Won-Tae;Ju, Jong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.96-106
    • /
    • 2001
  • As the drilling depth increases, the cutting torque increases and fluctuates, which can lead to the machine tool vibration, severe tool wear, and catastrophic tool breakage. Hence, cutting torque control is very important to improve productivity in drilling. In this paper, a PID controller was designed to control the drilling torque. The plant including the feed drive system, cutting process and spindle drive system was modeled for controller design. The Ziegler-Nichols method was used to determine the controller gain and control action times and the root locus plot was used to tune the controller gain for a certain cutting condition. Also, suggested was a simple method to obtain the tuned controller gain for an arbitrary cutting condition not using the Ziegler-Nichols method and the root locus plot. The performance of the designed controller and the effect of controller gain tuning were verified from experiments.

  • PDF

Design and Fabrication of wideband low-noise amplification stage for COMINT (통신정보용 광대역 저잡음 증폭단 설계 및 구현)

  • Go, Min-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.2
    • /
    • pp.221-226
    • /
    • 2012
  • In this paper, wideband two-stage amplification stage was designed, fabricated and evaluated. The proposed amplification stage with a novel gain control method have a high gain, low noise and high linearity performance. It is consisted of common emitter amplifier as the first stage, cascode gain control amplifier as second stage and power detector which sense the received signal strength. The proposed amplification stage shows a total gain of 29 dB~37 dB, noise fiugre of 1.5 dB at operating band and high linearity performance as the IMD (third intermodulation distortion) level is below the noise level of the measurement equipment at the control voltage 2.0 V generated from power detector under the strong electric field condition.

A Design of High Speed Infrared Optical Data Link IC (고속 적외선 광 송수신 IC 설계)

  • 임신일;조희랑;채용웅;유종선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12B
    • /
    • pp.1695-1702
    • /
    • 2001
  • This paper describes a design of CMOS infrared (IR) wireless data link IC which can be used in IrDA(Infrared Data Association) application from 4 Mb/s to 100 Mb/s The implemented chip consists of variable gain transimpedance amplifier which has a gain range from 60 dB to 100 dB, AGC (automatic gain control) circuits, AOC(automatic offset control) loop, 4 PPM (pulse position modulation) modulator/demodulator and DLL(delay locked loops). This infrared optical link If was implemented using commercial 0.25 um 1-poly 5-metal CMOS process. The chip consumes 25 mW at 100 Mb/s with 2.5 V supply voltage excluding buffer amplifier. The die area of prototype IC is 1.5 mm $\times$ 1 mm.

  • PDF

A Dual-Channel CMOS Transimpedance Amplifier Array with Automatic Gain Control for Unmanned Vehicle LADARs (무인차량 라이다용 CMOS 듀얼채널 자동 이득조절 트랜스임피던스 증폭기 어레이)

  • Hong, Chaerin;Park, Sung Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.831-835
    • /
    • 2016
  • In this paper, a dual-channel feed-forward transimpedance(TIA) array is realized in a standard $0.18-{\mu}m$ CMOS technology which exploits automatic gain control function to provide 40-dB input dynamic range for either detecting targets nearby or sensing imminent danger situations. Compared to the previously reported conventional feed-forward TIA, the proposed automatic-gain-control feed-forward TIA(AFF-TIA) extends the input dynamic range 25 dB wider by employing a 4-level automatic gain control circuit. Measured results demonstrate the linearly varying transimpedance gain of 47 to $72dB{\Omega}$, input dynamic range of 1:100, the bandwidth of $${\geq_-}670MHz$$, the equivalent input referred noise current spectral density of 6.9 pA/${\surd}$HZ, the maximum sensitivity of -26.8 dBm for $10^{-12}BER$, and the power consumption of 27.6 mW from a single 1.8-V supply. The dual-channel chip occupies the area of $1.0{\times}0.73mm^2$ including I/O pads.

Simulation and Experimental Validation of Gain-Control Parallel Hybrid Fiber Amplifier

  • Ali, Mudhafar Hussein;Abdullah, Fairuz;Jamaludin, Md. Zaini;Al-Mansoori, Mohammed Hayder;Al-Mashhadani, Thamer Fahad;Abass, Abdulla Khudiar
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.657-662
    • /
    • 2014
  • We demonstrate a simulation of a parallel hybrid fiber amplifier in the C+L-band with a gain controlling technique. A variable optical coupler is used to control the input signal power for both EDFA and RFA branches. The gain spectra of the C+L-band are flattened by optimizing the coupling ratio of the input signal power. In order to enhance the pump conversion efficiency, the EDFA branch was pumped by the residual Raman pump power. A gain bandwidth of 60 nm from 1530 nm to 1590 nm is obtained with large input signal power less than -5 dBm. The gain variation is about 1.06 dB at a small input signal power of -30 dBm, and it is reduced to 0.77 dB at the large input signal power of -5 dBm. The experimental results show close agreement with the simulation results.

Automatic Gain Flattening Control and Automatic Gain Control Using an All Optical Method in an Optical Amplifier (광증폭기의 이득과 이득 평탄화를 동시에 자동 제어하는 완전 광학적 방법)

  • Choi, Bo-Hun;Lee, Sang-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.5
    • /
    • pp.261-265
    • /
    • 2009
  • Our amplifier using an all optical method and a fixed GFF achieved automatic gain flatness throughput the C-band without any NF degradation, and simultaneously achieved a constant 25 dB gain, while input signals were varied between one channel and forty WDM channels. When thirty nine channels were added and dropped, the transient gain variation of the survival channel was not greater than the steady-state gain variation, and its wavelength dependency was negligible.

Controller Design for Flexible Joint of Industrial Robots: Part 2 - Vibration Suppression Control and Gain-Scheduling (산업용 로봇의 유연관절 제어기 설계: Part 2 - 진동억제 제어 및 게인스케듈링)

  • Park Jong-Hyeon;Lee Sang-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.371-379
    • /
    • 2006
  • Increasing requirements for the high quality of industrial robot performance made the vibration control issue very important because the vibration makes it difficult to achieve quick response of robot motion and may bring mechanical damage to the robot. This paper presents a vibration control solution for industrial robots which have flexible joints. The joint flexibility is modeled as a two-mass system. And we analyze the vibration problem of a classical P-PI controller when it used for the flexible joints of industrial robots. Then a state feedback controller is designed for vibration suppression of the two-mass system. Finally, a gain-scheduling method is designed for maintaining control performance in spite of the time-varying nature of each joint's load side inertia. Simulation and experimental results show effective vibration suppression and uniform properties in overshoot in spite of the variation of load. The result of this study can be applied to the appropriate gain manipulation of many other mechatronic devices which have the two-mass system with varying load side inertia.

Fuzzy Based Control Gain Auto-Tuning of Servo Driver (퍼지를 이용한 서보드라이버의 제어 개인 자동 조정)

  • Kong, Young-Bae;Seo, Ho-Joon;Park, Gwi-Tae;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.541-543
    • /
    • 1998
  • Generally, PI control is simple and easy to implement and gains of PI control are determined by specifying a dynamics of the servo driver system. However, the gain-tuning is so difficult that it is relied on an expert's effort. This paper presents a gain auto-tuning method for PI controllers based on a fuzzy inference mechanism. First, the proposed fuzzy inference system identifies a system moment of inertia and adjusts control gains by using the difference in speed responses between a real plant and a reference model. Second, this paper proposes an improved fuzzy PI controller. To reduce the speed overshoot, we adapt a control method that selects a proper PI gains with respect to the load inertia variation. To prove the validity of the proposed gain tuning algorithm and the feasibility of the servo drive, a high performance servo drive will be implemented by DSP(TMS320C31) and intelligent power module (IPM). The proposed controller is applied to the speed control of the 300W AC servo motor. Some simulations and experimental results show that the proposed fuzzy PI controller is more robust than the conventional PI controller against the load inertia variation.

  • PDF

A Time Delay-Based Gain Scheduled Control and It's Application to Electromagnetic Suspension System (시간 지연 이득 계획 제어와 자기 부상 시스템에의 응용)

  • Sung, Ho-Kyong;Jho, Jeong-Min;Cho, Heung-Jae;Kim, Dong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.221-225
    • /
    • 2005
  • This paper proposes a gain scheduled control technique using time-delay for the nonlinear system with plant uncertainties and unexpected disturbances. The time delay-based gain scheduled control depends on a direct estimation of a function representing the effect of uncertainties. The information from the estimation is used to cancel the unknown dynamics and the unexpected disturbances simultaneously. The proposed estimation scheme with a finite convergence time is formulated in order to estimate the unborn scheduling variable variation. In other words, the time delay-based gain scheduled control uses the past observation of the system's response and the control input to directly modify the control actions rather than to adjust the controller gains or to identify system parameters. It has a simple structure so as to minimize the computational burden. The benefits of this proposed scheme are demonstrated in the simulation of an electromagnetic suspension system with plant uncertainties and external disturbances, and the proposed controller is compared with the conventional state feedback controller.

  • PDF