• Title/Summary/Keyword: control by displacement

Search Result 1,160, Processing Time 0.031 seconds

Characterization of Partial Interfacial Fracture on Resistance Spot-Welded TRIP Steels for Automotive Applications (자동차 차체용 TRIP강판의 저항 점용접부 Partial Interfacial Fracture 특성에 관한 연구)

  • Choi, Chul Young;Kim, In-Bae;Kim, Yangdo;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.136-145
    • /
    • 2012
  • Resistance spot welding of TRIP780 steels was investigated to enhance understanding of weld fracture mode after tensile shear testing (TST) and L-shape tensile testing (LTT). The main failure mode for spot welds of TRIP780 steels was partial interfacial fracture (PIF). Although PIF does not satisfy the minimum button diameter (4${\surd}$t) for acceptable welds, it shows enough load carrying capacity of resistance spot welds for advanced high strength steels. In the analysis of displacement controlled L-shape tensile test results, cracks initiated at the notch of the faying surface and propagated through the interface of weldments, and finally, cracks change path into the sheet thickness direction. Use of the ductility ratio and CE analysis suggested that the occurrence of PIF is closely related to high hardness and brittle welds, which are caused by fast cooling rates and high chemical compositions of TRIP steels. Analysis of the hold time and weld time in a welding schedule demonstrated that careful control of the cooling rate and the size of a weld nugget and the HAZ zone can reduce the occurrence of PIF, which leads to sound welds with button fractures (BFs).

A study on the maturation of cardiomyocytes by continuous supply of culture media (세포 배양액의 연속 공급기 제작을 통한 심근세포의 성숙개선에 관한 연구)

  • Kwon, WooJin;Kim, Geun Woo;Jeong, Unseon;Kim, Jongyun;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.109-113
    • /
    • 2021
  • In this study, an automated culture media replacement system was developed to analyze changes in the contraction characteristics of cardiomyocytes according to the state of the culture media. For the long-term storage of culture media, a Peltier refrigerator with a temperature of 5 to 8℃ was provided and a pH of 7.4 was maintained. The cell culture media of the cardiomyocytes was continuously replaced using interlocking pumps at a flow rate of 0.83 μl/h. The cardiomyocytes in which the culture media was replaced automatically demonstrated lower heartbeats per minute compared to samples in which there was no replacement. However, these cardiomyocytes moved more uniformly and produced greater displacement in one heartbeat cycle. It was observed that the sarcomere length of the cardiomyocytes increased due to the automated culture media replacement system. These cardiomyocytes were found to demonstrate better maturation compared to the control group. The maturation of cardiomyocytes was verified through staining images. The proposed automated culture media replacement system generates a uniform heart rate and improvements in contraction force. Based on the study, patient-specific drug toxicity assessments can be conducted using differentiated cardiomyocytes in induced pluripotent stem cells.

Theoretical Heat Flow Analysis and Vibration Characteristics During Transportation of PCS(Power Conversion System) for Reliability (전력변환장치 캐비넷에서의 내부발열 개선을 위한 열유동 분석 및 유통안전성 향상을 위한 진동특성 분석)

  • Joo, Minjung;Suh, Sang Uk;Oh, Jae Young;Jung, Hyun-Mo;Park, Jong-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.2
    • /
    • pp.143-149
    • /
    • 2022
  • PCS needs to freely switch AC and DC to connect the battery, external AC loads and renewable energy in both directions for energy efficiency. Whenever converting happens, power loss inevitably occurs. Minimization of the power loss to save electricity and convert it for usage is a very critical function in PCS. PCS plays an important role in the ESS(Energy Storage System) but the importance of stabilizing semiconductors on PCB(Printed Circuit Board) should be empathized with a risk of failure such as a fire explosion. In this study, the temperature variation inside PCS was reviewed by cooling fan on top of PCS, and the vibration characteristics of PCS were analyzed during truck transportation for reliability of the product. In most cases, a cooling fan is mounted to control the inner temperature at the upper part of the PCS and components generating the heat placed on the internal aluminum cooling plate to apply the primary cooling and the secondary cooling system with inlet fans for the external air. Results of CFD showed slightly lack of circulating capacity but simulated temperatures were durable for components. The resonance points of PCS were various due to the complexity of components. Although they were less than 40 Hz which mostly occurs breakage, it was analyzed that the vibration displacement in the resonance frequency band was very insufficient. As a result of random-vibration simulation, the lower part was analyzed as the stress-concentrated point but no breakage was shown. The steel sheet could be stable for now, but for long-term domestic transportation, structural coupling may occur due to accumulation of fatigue strength. After the test completed, output voltage of the product had lost so that extra packaging such as bubble wrap should be considered.

Deformation Analysis of Shallow Tunnel Using Tunnel Model Test and Computational Analysis (모형시험과 수치해석을 이용한 저토피 터널의 변형거동에 관한 연구)

  • Lee, Jae-Ho;Kim, Young-Su;Moon, Hong-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • The control and prediction of surface settlement, gradient and ground displacement are the main factors in shallow tunnel design and construction in urban area. For deformation analysis of shallow tunnel due to excavation it is important to identify possible deformation mechanism of shear bands developing from tunnel shoulder to the ground surface. This paper investigaties quantitatively the deformation behavior of shallow tunneling by model tunnel test and strain softening analysis Incorporating the reduction of shear stiffness and strength parameters. The comparison of model tunnel test result and numerical simulation using strain softening analysis showed good agreement in crown settlement, normalized subsidence settlement and developing shear bands above tunnel shoulder. In this study, it is blown that the strain softening modeling is applicable to the nonlinear deformation analysis of shallow tunnel.

Parametric study of a new tuned mass damper with pre-strained SMA helical springs for vibration reduction

  • Hongwang Lv;Bin Huang
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.89-100
    • /
    • 2023
  • This paper conducts a parametric study of a new tuned mass damper with pre-strained superelastic SMA helical springs (SMAS-TMD) on the vibration reduction effect. First, a force-displacement relation model of superelastic SMA helical spring is presented based on the multilinear constitutive model of SMA material, and the tension tests of the six SMA springs fabricated are implemented to validate the mechanical model. Then, a dynamic model of a single floor steel frame with the SMAS-TMD damper is set up to simulate the seismic responses of the frame, which are testified by the shaking table tests. The wire diameter, initial coil diameter, number of coils and pre-strain length of SMA springs are extracted to investigate their influences on the seismic response reduction of the frame. The numerical and experimental results show that, under different earthquakes, when the wire diameter, initial coil diameter and number of coils are set to the appropriate values so that the initial elastic stiffness of the SMA spring is between 0.37 and 0.58 times of classic TMD stiffness, the maximum reduction ratios of the proposed damper can reach 40% as the mass ratio is 2.34%. Meanwhile, when the pre-strain length of SMA spring is in a suitable range, the SMAS-TMD damper can also achieve very good vibration reduction performance. The vibration reduction performance of the SMAS-TMD damper is generally equal to or better than that of the classic optimal TMD, and the proposed damper effectively suppresses the detuning phenomena that often occurs in the classic TMD.

Static buckling analysis of bi-directional functionally graded sandwich (BFGSW) beams with two different boundary conditions

  • Berkia, Abdelhak;Benguediab, Soumia;Menasria, Abderrahmane;Bouhadra, Abdelhakim;Bourada, Fouad;Mamen, Belgacem;Tounsi, Abdelouahed;Benrahou, Kouider Halim;Benguediab, Mohamed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.503-517
    • /
    • 2022
  • This paper presents the mechanical buckling of bi-directional functionally graded sandwich beams (BFGSW) with various boundary conditions employing a quasi-3D beam theory, including an integral term in the displacement field, which reduces the number of unknowns and governing equations. The beams are composed of three layers. The core is made from two constituents and varies across the thickness; however, the covering layers of the beams are made of bidirectional functionally graded material (BFGSW) and vary smoothly along the beam length and thickness directions. The power gradation model is considered to estimate the variation of material properties. The used formulation reflects the transverse shear effect and uses only three variables without including the correction factor used in the first shear deformation theory (FSDT) proposed by Timoshenko. The principle of virtual forces is used to obtain stability equations. Moreover, the impacts of the control of the power-law index, layer thickness ratio, length-to-depth ratio, and boundary conditions on buckling response are demonstrated. Our contribution in the present work is applying an analytical solution to investigate the stability behavior of bidirectional FG sandwich beams under various boundary conditions.

Shear strengthening of seawater sea-sand concrete beams containing no shear reinforcement using NSM aluminum alloy bars

  • Yasin Onuralp Ozkilic;Emrah Madenci;Ahmed Badr;Walid Mansour;Sabry Fayed
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.153-172
    • /
    • 2024
  • Due to the fast development of constructions in recent years, there has been a rapid consumption of fresh water and river sand. In the production of concrete, alternatives such as sea water and sea sand are available. The near surface mounted (NSM) technique is one of the most important methods of strengthening. Aluminum alloy (AA) bars are non-rusting and suitable for usage with sea water and sand concrete (SSC). The goal of this study was to enhance the shear behaviour of SSC-beams strengthened with NSM AA bars. Twenty-four RC beams were cast from fresh water river sand concrete (FRC) and SSC before being tested in four-point flexure. All beams are the same size and have the same internal reinforcement. The major factors are the concrete type (FRC or SSC), the concrete degree (C25 or C50 with compressive strength = 25 and 50 MPa, respectively), the presence of AA bars for strengthening, the direction of AA bar reinforcement (vertical or diagonal), and the AA bar ratio (0, 0.5, 1, 1.25 and 2 %). The beams' failure mechanism, load-displacement response, ultimate capacity, and ductility were investigated. Maximum load and ductility of C25-FRC-specimens with vertical and diagonal AA bar ratios (1%) were 100,174 % and 140, 205.5 % greater, respectively, than a matching control specimen. The ultimate load and ductility of all SSC-beams were 16-28 % and 11.3-87 % greater, respectively, for different AA bar methods than that of FRC-beams. The ultimate load and ductility of C25-SSC-beams vertically strengthened with AA bar ratios were 66.7-172.7 % and 89.6-267.9 % higher than the unstrengthened beam, respectively. When compared to unstrengthened beams, the ultimate load and ductility of C50-SSC-beams vertically reinforced with AA bar ratios rose by 50-120 % and 45.4-336.1 %, respectively. National code proposed formulae were utilized to determine the theoretical load of tested beams and compared to matching experimental results. The predicted theoretical loads were found to be close to the experimental values.

Quantitative analysis of the TMJ movement with a new mandibular movement tracking and simulation system

  • Kim, Dae-Seung;Hwang, Soon-Jung;Choi, Soon-Chul;Lee, Sam-Sun;Heo, Min-Suk;Heo, Kyung-Hoe;Yi, Won-Jin
    • Imaging Science in Dentistry
    • /
    • v.38 no.4
    • /
    • pp.203-208
    • /
    • 2008
  • Purpose : The purpose of this study was to develop a system for the measurement and simulation of the TMJ movement and to analyze the mandibular movement quantitatively. Materials and Methods : We devised patient-specific splints and a registration body for the TMJ movement tracking. The mandibular movements of the 12 subjects with facial deformity and 3 controls were obtained by using an optical tracking system and the patient-specific splints. The mandibular part was manually segmented from the CT volume data of a patient. Three-dimensional surface models of the maxilla and the mandible were constructed using the segmented data. The continuous movement of the mandible with respect to the maxilla could be simulated by applying the recorded positions sequentially. Trajectories of the selected reference points were calculated during simulation and analyzed. Results : The selected points were the most superior point of bilateral condyle, lower incisor point, and pogonion. There were significant differences (P<0.05) between control group and pre-surgical group in the maximum displacement of left superior condyle, lower incisor, and pogonion in vertical direction. Differences in the maximum lengths of the right and the left condyle were 0.59${\pm}$0.30 mm in pre-surgical group and 2.69${\pm}$2.63 mm in control group, which showed a significant difference (P<0.005). The maximum of differences between lengths of the right and the left calculated during one cycle also showed a significant difference between two groups (P<0.05). Conclusion : Significant differences in mandibular movements between the groups implies that facial deformity have an effect on the movement asymmetry of the mandible. (Korean J Oral Maxillofac Radiol 2008; 38 : 203-8)

  • PDF

Structural Performance Evaluation of a Multi-span Greenhouse with Venlo-type Roof According to Bracing Installation (가새 설치에 따른 벤로형 지붕 연동온실의 구조성능 평가)

  • Shin, Hyun Ho;Choi, Man Kwon;Cho, Myeong Whan;Kim, Jin Hyun;Seo, Tae Cheol;Lee, Choung Kuen;Kim, Seung Yu
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.438-443
    • /
    • 2022
  • In this study, the lateral loading test was performed to analyze structural performance of multi-span plastic greenhouse through full-scale experiment and numerical analysis. In order to analyze the lateral stiffness and stress, we installed 9 displacement sensors and 19 strain gauge sensors on the specimen, respectively, and load of l mm per minute was applied until the specimen failure. In the comparison between the full-scale experiment and the structural analysis results of a multi-span greenhouse with venlo-type roof according to bracing installation, there was a large difference in the lateral stiffness of the structure. By installing a brace system, the lateral stiffness measured near the side elevation of the specimen increased by up 44%. As the bracing joint used in the field did not secure sufficient rigidity, the external force could not be transmitted to the entire structure properly. Therefore, it is necessary to establish a bracing construction method and design standards in order for a greenhouse to which bracing applied to have sufficient performance.

Shaking table tests of prestressed damping-isolation units using a spring and rubbers

  • Yang, Keun-Hyeok;Mun, Ju-Hyun;Im, Chae-Rim;Won, Eun-Bee
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.373-384
    • /
    • 2022
  • To improve the seismic performance of suspended ceiling structures, various vibration-damping devices have been developed. However, the devices made of metals have a limit in that they cause large deformation and seriously damages the exterior of the suspended ceiling structure from the wall. As a results, their strengthening effect of the suspended ceiling structure was minimal. Thus, this study employed a spring and vibration-proof rubber effectively controlled vibrations without increasing horizontal seismic loads on the ceiling to enhance the seismic resistance of suspended ceiling structures. The objective of the study is to examine the dynamic properties of a seismic damping-isolation unit (SDI) with various details developed. The developed SDI was composed of a spring, embossed rubbers, and prestressed bolts, which were the main factors enhancing the damping effect. The shaking table tests were performed on eight SDI specimens produced with the number of layers of embossed rubber (ns), presence or absence of a spring, prestressed force magnitude introduced in bolts (fps), and mass weight (Wm) as the main parameters. To identify the enhancement effect of the SDI, the dynamic properties of the control specimen with a conventional hanger bolt were compared to those of the SDI specimens. The SDI specimens were effective in reducing the maximum acceleration (Ac max), acceleration amplification factor (αp), relative displacement (δR), and increasing the damping ratio (ξ) when compared to the control specimen. The Ac max, αp, and δR of the SDI specimens with two rubbers, spring, and fps of 0.1fby, where fby is the yielding strength of the screw bolt were 57.8%, 58.0%, and 61.9% lower than those of the conventional hanger bolt specimens, respectively, resulting in the highest ξ (=0.127). In addition, the αp of the SDI specimens was 50.8% lower than those specified in ASCE 7 and FEMA 356. Consequently, to accurately estimate the αp of the SDI specimens, a simple model was proposed based on the functions of fps, stiffness constant of the spring (K), Wm, and ns.