• Title/Summary/Keyword: contractility

Search Result 320, Processing Time 0.022 seconds

Studies on the Cardiovascular Effects of Ambrein Pretreatment in Rats

  • Raza, M.;Taha, S.A.;El-Khawad, I.E.
    • Natural Product Sciences
    • /
    • v.5 no.1
    • /
    • pp.25-32
    • /
    • 1999
  • The pharmacological actions of ambrein were investigated alone or in combination as a pretreatment with agonists (adrenaline, noradrenaline, acetylcholine, histamine, nicotine), antagonists (atropine, atenolol) and calcium channel blocker (verapamil) in vivo in anaesthetized SWR rats using blood pressure, heart rate and myocardial contractility as parameters. Ambrein in the dose range of 50-200 mg/kg to the normotensive anaesthetized rats demonstrated negative chronotropic effect and increased the myocardial contractility significantly. At the mid dose (100 mg/kg) this increase in contractile force was 36% and 44% above the normal at 30 min and 60 min intervals post-treatment, respectively. Both of the lower and high doses (50 mg/kg and 200 mg/kg) had similar effects. Furthermore, this contractile response was dose related. Also, this compound produced a considerable increase in myocardial contractility when used as a pretreatment with some agonists and antagonists. The results on blood pressure did not show a considerable change when ambrein was used alone. However, ambrein pretreatment at the dose of 100 mg/kg did not block the effects of adrenaline, noradrenaline, isoprenaline and acetylcholine on heart rate and blood pressure. On the other hand, this pretreatment attenuated the sympathoadrenal effects of nicotine significantly. Chronotropic and blood pressure changes produced by histamine were also inhibited by ambrein pretreatment. This pretreatment significantly reversed the effects of atenolol but failed to demonstrate any change in the negative chronotropic, inotropic and hypotensive responses induced by verapamil. It is concluded that ambrein induced nonselective dose dependent antagonism of the effects of some agonists and antagonists require contribution of some neuromediators. However, the positive isotropic effects of ambrein possibly involve the enhancement of slow Ca channels and/or activation of ${\beta}-adrenergic$ receptors in the heart. At this moment it is difficult to explain the exact mode of action of ambrein and the studies dealing with Ca channel blocker and adrenergic blocker followed by ambrein may help to define the factors which contribute to its positive inotropic effects.

  • PDF

SM22α Is Required for Agonist-induced Regulation of Contractility: Evidence from SM22α Knockout Mice

  • Je, Hyun Dong;Sohn, Uy Dong
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.175-181
    • /
    • 2007
  • The present study was undertaken to determine whether $SM22{\alpha}$ participates in the regulation of vascular smooth muscle contractility using $SM22{\alpha}$ knockout mice and, if so, to investigate the mechanisms involved. Aortic ring preparations were mounted and equilibrated in organ baths for 60 min before observing contractile responses to 50 mM KCl, and then exposed to contractile agents such as phenylephrine and phorbol ester. Measurement of isometric contractions using a computerized data acquisition system was combined with molecular or cellular experiments. Interestingly, the aortas from $SM22{\alpha}$-deficient mice ($SM22^{-/-LacZ}$) displayed an almost three-fold increase in the level of $SM22{\beta}$ protein compared to wild-type mice, but no change in the levels of caldesmon, actin, desmin or calponin. $Ca^{2+}$-independent contraction in response to phenylephrine or phorbol ester was significantly decreased in the $SM22{\alpha}$-deficient mice, whereas in the presence of $Ca^{2+}$ neither contraction nor subcellular translocation of myosin light chain kinase (MLCK) in response to phenylephrine or 50 mM KCl was significantly affected. A decrease in phosphorylation of extracellular signal regulated kinase (ERK) 1/2 was observed in the $SM22{\alpha}$-deficient mice and this may be related to the decreased vascular contractility. Taken together, this study provides evidence for a pivotal role of $SM22{\alpha}$ in the regulation of $Ca^{2+}$-independent vascular contractility.

Changes of Vascular Contractility of isolated Rat Aorta treated with Salt Stress (Salt 스트레스에 의한 흰쥐 적출대동맥의 수축력 변화양상)

  • 김종일;박태규;김중영
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1131-1136
    • /
    • 2003
  • To examine whether salt stress would alter or not contractility of isolated rat aorta, under anesthesia with sodium pentobarbital(50 mg kg-1 i.p.), male Sprague Dawley rats(300-330 g) were subjected to 0, 50, and 150 mM of sodium chloride at 37$^{\circ}C$ for 60 min. where as the sham group was left at modified Krebs-bicarbonate solution. To measure contractile response of vascular ring preparation isolated from rat was determined in organ bath and was recorded on physiograph connected to isometric transducer. And the strip was checked for expression of heat shock protein(Hsp) by Western blotting. One, three and eight hours later, we measured vascular contractility of isolated rat aorta treated with KCI, phenylephrine from organ bath study. The dose-vascular responses of potassium chloride and phenylephrine showed a little augmentation by NaCl concentration in the strips exposed to NaCl for 8 hours. And the response of relaxation induced by nitroprusside and acetylcholine was not influenced by NaCl stress in isolated aorta ring for 8 hours, respectively. Expression pattern of Hsp 70 of vascular muscle in isolated rat aorta showed a little increase in 150 mM NaCl group at 8 hours after NaCl treatment but not at 3 hours, and Hsp 60 expression of rat aorta was markedly increased in 50 mM NaCl group at 8 hours after NaCl treatment. Taken together, NaCl induced dose-and time dependent accumulation of the Hsp but not affected contraction of rat aorta. These data suggest that short term high salt stress was not sufficient to induce hypertension of rat aorta.

The Convergence Effect of Histamine and Atropine on Intestinal Contractility (위장관 수축성에 대한 Histamine과 Atropine의 융합성 조절 효과)

  • Je, Hyun Dong;Min, Young Sil
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.10
    • /
    • pp.131-137
    • /
    • 2021
  • The aim of the study was to observe the influence and related mechanism of histamine and its analogues used for hypersensitivity tests and used as an indicator of impurities in drugs on the tissue-specific intestinal contraction. Intestinal contraction includes the activation of thick or thin filament regulation. However, there are few reports addressing the question whether this regulation is involved in histamine-induced regulation. We hypothesized that histamine plays a role in tissue-dependent regulation of intestinal contractility. Denuded ileal/colonic longitudinal and circular muscles of male rats were used and isometric contractions were recorded using a data acquisition system. Interestingly, histamine alone didn't increase the contraction of the circular muscle but increased the contraction of the longitudinal muscle. Histamine together with atropine (M3 receptor antagonist) didn't inhibit the contraction of the longitudinal and circular muscle. Therefore, histamine alone and together with atropine increases the ileal longitudinal muscle contraction suggesting that additional mechanisms (decreased receptor density, postreceptor signaling or distribution of agonists) might be involved in the regulation of ileal muscle contractility. In conclusion, histamine and/or atropine has some effect on the regulation of the longitudinal contractility regardless of M3 receptor and the simpler test would be preferred as the drug impurity test compared to more complicated tests.

The convergence effect of phenylephrine, isoprenaline and prazosin on vascular contractility (혈관 수축성에 대한 phenylephrine, isoprenaline 및 prazosin의 융합성 조절 효과)

  • Je, Hyun Dong;Min, Young Sil
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.4
    • /
    • pp.119-125
    • /
    • 2022
  • In the study, we endeavored to investigate the effect of phenylephrine, isoprenaline and prazosin on the tissue-specific vascular contractility and to determine the mechanism involved. There were few reports addressing the question whether thin or thick filament modulation is included in phenylephrine, isoprenaline and prazosin-induced regulation. We hypothesized that isoprenaline and prazosin play a role in tissue-dependent regulation of vascular contractility. Denuded arterial muscles of Sprague-Dawley male rats were suspended in organ baths and isometric tensions were transduced and recorded using isometric transducers and an automatic data acquisition system. Interestingly, sustained continuous contraction of thoracic and abdominal aorta. Furthermore, isoprenaline and prazosin together with phenylephrine inhibited transiently and persistently vasoconstriction of thoracic and abdominal aorta suggesting that additional mechanisms (e.g. decreased receptor density, chemical interaction, postreceptor signaling or distribution of agonists) might be included in the modulation of vascular contractility.

Radiomics of Non-Contrast-Enhanced T1 Mapping: Diagnostic and Predictive Performance for Myocardial Injury in Acute ST-Segment-Elevation Myocardial Infarction

  • Quanmei Ma;Yue Ma;Tongtong Yu;Zhaoqing Sun;Yang Hou
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.535-546
    • /
    • 2021
  • Objective: To evaluate the feasibility of texture analysis on non-contrast-enhanced T1 maps of cardiac magnetic resonance (CMR) imaging for the diagnosis of myocardial injury in acute myocardial infarction (MI). Materials and Methods: This study included 68 patients (57 males and 11 females; mean age, 55.7 ± 10.5 years) with acute ST-segment-elevation MI who had undergone 3T CMR after a percutaneous coronary intervention. Forty patients of them also underwent a 6-month follow-up CMR. The CMR protocol included T2-weighted imaging, T1 mapping, rest first-pass perfusion, and late gadolinium enhancement. Radiomics features were extracted from the T1 maps using open-source software. Radiomics signatures were constructed with the selected strongest features to evaluate the myocardial injury severity and predict the recovery of left ventricular (LV) longitudinal systolic myocardial contractility. Results: A total of 1088 segments of the acute CMR images were analyzed; 103 (9.5%) segments showed microvascular obstruction (MVO), and 557 (51.2%) segments showed MI. A total of 640 segments were included in the 6-month follow-up analysis, of which 160 (25.0%) segments showed favorable recovery of LV longitudinal systolic myocardial contractility. Combined radiomics signature and T1 values resulted in a higher diagnostic performance for MVO compared to T1 values alone (area under the curve [AUC] in the training set; 0.88, 0.72, p = 0.031: AUC in the test set; 0.86, 0.71, p = 0.002). Combined radiomics signature and T1 values also provided a higher predictive value for LV longitudinal systolic myocardial contractility recovery compared to T1 values (AUC in the training set; 0.76, 0.55, p < 0.001: AUC in the test set; 0.77, 0.60, p < 0.001). Conclusion: The combination of radiomics of non-contrast-enhanced T1 mapping and T1 values could provide higher diagnostic accuracy for MVO. Radiomics also provides incremental value in the prediction of LV longitudinal systolic myocardial contractility at six months.

Fabrication of a Parallel Polymer Cantilever to Measure the Contractile Force of Drug-treated Cardiac Cells (약물처리된 심장세포의 세포 수축력 측정을 위한 병렬 폴리머 캔틸레버 제작)

  • Kim, Dong-Su;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.100-104
    • /
    • 2020
  • Thus far, several in vivo biosensing platforms have been proposed to measure the mechanical contractility of cultured cardiomyocytes. However, the low sensitivity and screening rate of the developed sensors severely limit their practical applications. In addition, intensive research and development in cardiovascular disease demand a high-throughput drug-screening platform based on biomimetic engineering. To overcome the drawbacks of the current state-of-the-art methods, we propose a high-throughput drug-screening platform based on 16 functional high-sensitivity well plates. The proposed system simulates the physiological accuracy of the heart function in an in vitro environment. We fabricated 64 cantilevers using highly flexible and optically transparent silicone rubber and placed in 16 independent wells. Nanogrooves were imprinted on the surface of the cantilever to promote cell alignment and maturation. The adverse effects of the cardiovascular drugs on the cultured cardiomyocytes were systematically investigated. The 64 cantilevers demonstrated a highly reliable and reproducible mechanical contractility of the drug-treated cardiomyocytes. Real-time high-throughput screening and simultaneous evaluation of the cardiomyocyte mechanical contractility under multiple drugs verified that the proposed system could be used as an efficient drugtoxicity test platform.

High fat diet confers vascular hyper-contractility against angiotensin II through upregulation of MLCK and CPI-17

  • Kim, Jee In
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.99-106
    • /
    • 2017
  • Obesity is a critical risk factor for the hypertension. Although angiotensin II (Ang II) in obese individuals is known to be upregulated in obesity-induced hypertension, direct evidence that explains the underlying mechanism for increased vascular tone and consequent increase in blood pressure (BP) is largely unknown. The purpose of this study is to investigate the novel mechanism underlying Ang II-induced hyper-contractility and hypertension in obese rats. Eight-week old male Sprague-Dawley rats were fed with 60% fat diet or normal diet for 4 months. Body weight, plasma lipid profile, plasma Ang II level, BP, Ang II-induced vascular contraction, and expression of regulatory proteins modulating vascular contraction with/without Ang II stimulation were measured. As a result, high fat diet (HFD) accelerated age-dependent body weight gaining along with increased plasma Ang II concentration. It also increased BP and Ang II-induced aortic contraction. Basal expression of p-CPI-17 and myosin light chain (MLC) kinase was increased by HFD along with increased phosphorylation of MLC. Ang II-induced phosphorylation of CPI-17 and MLC were also higher in HFD group than control group. In conclusion HFD-induced hypertension is through at least in part by increased vascular contractility via increased expression and activation of contractile proteins and subsequent MLC phosphorylation induced by increased Ang II.

The Effect of Rebamipide on the Regulation of Intestinal Contractility (Carbachol에 의한 위장관 수축에 대한 rebamipide의 융합성 조절 효과)

  • Je, Hyun Dong;Min, Young Sil
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.10
    • /
    • pp.109-114
    • /
    • 2020
  • The aim of the study was to observe the influence and related mechanism of rebamipide on the intestinal contraction. Intestinal contraction includes the activation of thick or thin filament regulation. However, there are few reports addressing the question whether this regulation is involved in rebamipide-induced regulation. We hypothesized that rebamipide plays a role in intestinal contraction evoked by carbachol in rat intestine. Interestingly, rebamipide alone didn't inhibit and rather slightly increased the contraction in the denuded muscle. Therefore, rebamipide alone and together with indomethacin increases the ileal contraction suggesting that additional pathways might be involved in the regulation of ileal contractility. In conclusion, rebamipide has some effect on the regulation of contractility and anti-ulcer by NSAIDs.

Cytomegalovirus Myocarditis Required Extracorporeal Membrane Oxygenation Support Followed by Ganciclovir Treatment in Infant

  • Kim, Bong Jun;Jung, Jo Won;Shin, Yu Rim;Park, Han Ki;Park, Young Hwan;Shin, Hong Ju
    • Journal of Chest Surgery
    • /
    • v.49 no.3
    • /
    • pp.199-202
    • /
    • 2016
  • A 7-month-old girl with no medical history was treated with mechanical circulatory support due to myocarditis. Her cardiac contractility did not improve despite more than one week of extracorporeal membrane oxygenation treatment. Thus, we planned a heart transplant. However, a high level of cytomegalovirus was found in blood laboratory results by quantitative polymerase chain reaction. The patient's heart contractility recovered to normal range four days after ganciclovir treatment. She was discharged with slightly decreased cardiac contractility with a left ventricular ejection fraction of 45%.