• Title/Summary/Keyword: contour tiling method

Search Result 7, Processing Time 0.021 seconds

East Reconstruction of 3D Human Model from Contour Lines (외곽선을 이용한 고속 3차원 인체모델 재구성)

  • Shin Byeong-Seok;Roh Sung;Jung Hoe-Sang;Chung Min Suk;Lee Yong Sook
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.537-543
    • /
    • 2004
  • In order to create three-dimensional model for human body, a method that reconstructs geometric models from contour lines on cross-section images is commonly used. We can get a set of contour lines by acquiring CT or MR images and segmenting anatomical structures. Previously proposed method divides entire contour line into simply matched regions and clefts. Since long processing time is required for reconstructing cleft regions, its performance might be degraded when manipulating complex data such as cross-sections for human body. In this paper, we propose a fast reconstruction method. It generates a triangle strip with single tiling operation for simple region that does not contain branch structures. If there exist branches in contour lines, it partitions the contour line into several sub-contours by considering the number of vertices and their spatial distribution. We implemented an automatic surface reconstruction system by using our method which reconstructs three-dimensional models for anatomical structures.

Reconstruction of 3D Brain Model using Curvature Information (곡률 정보를 이용한 뇌의 3차원 모델 구성)

  • An, Kwang-Ok;Jung, Hyun-Kyo
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.146-150
    • /
    • 2008
  • In order to study cortical properties in human, it is necessary to obtain an accurate and explicit representation of the cortical surface in individual subjects. Among many approaches, surface-based method that reconstructs a 3-D model from contour lines on cross-section images is widely used. The conventional method detects match points of contours using the minimum straight distance between any pair of contour points which lie on different contours. Then, it generates a triangle strip. In general, however, it might yield small mismatches between contours in case of brain due to complex anatomical structures. In this paper, therefore, we present an improved method for tilting operation that uses the curvature values calculated from surface information. The usefulness of the proposed method has been verified using brain image.

A Study on the 3D Reconstruction and Representation of CT Images (CT영상의 3차원 재구성 및 표현에 관한 연구)

  • 한영환;이응혁
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.201-208
    • /
    • 1994
  • Many three-dimensional object modeling and display methods for computer graphics and computer vision have been developed. Recently, with the help of medical imaging devices such as computerized tomography, magnetic resonance image, etc., some of those object modeling and display methods have been widely used for capturing the shape, structure and other properties of real objects in many medical applications. In this paper, we propose the reconstruction and display method of the three-dimensional object from a series of the cross sectonal image. It is implemented by using the automatic threshold selection method and the contour following algorithm. The combination of curvature and distance, we select feature points. Those feature points are the candidates for the tiling method. As a results, it is proven that this proposed method is very effective and useful in the comprehension of the object's structure. Without the technician's responce, it can be automated.

  • PDF

A Surface Reconstruction Method from Contours Based on Dividing Virtual Belt (가상벨트 분할에 기반한 등고선으로부터의 표면재구성 방법)

  • Choi, Young-Kyu;Lee, Seung-Ha
    • The KIPS Transactions:PartB
    • /
    • v.14B no.6
    • /
    • pp.413-422
    • /
    • 2007
  • This paper addresses a new technique for constructing surface model from a set of wire-frame contours. The most difficult problem of this technique, called contour triangulation, arises when there are many branches on the surface, and causes lots of ambiguities in surface definition process. In this paper, the branching problem is reduced as the surface reconstruction from a set of virtual belts and virtual canyons. To tile the virtual belts, a divide-and-conquer strategy based tiling technique, called the BPA algorithm, is adopted. The virtual canyons are covered naturally by an iterative convex removal algorithm with addition of a center vertex for each branching surface. Compared with most of the previous works reducing the multiple branching problem into a set of tiling problems between contours, our method can handle the problem more easily by transforming it into more simple topology, the virtual belt and the virtual canyon. Furthermore, the proposed method does not involve any set of complicated criteria, and provides a simple and robust algorithm for surface triangulation. The result shows that our method works well even though there are many complicated branches in the object.

A 3-D Visualization Method for Geographical Information based on Contour Lines (등고선을 이용한 자행정보의 3차원 시각화 기법)

  • Han, Jung-Kyu;Baek, Joong-Hwan;Hwang, Soo-Chan
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.2
    • /
    • pp.123-133
    • /
    • 2001
  • The existing visualization methods using the satellite images or map images require complicated preprocessing stages and a large amount of visual data to represent the 3-D terrain. This paper presents a 3-D visualization method for geographical information, which enables automatic generation of 3-D terrain. It is generated based, on contour information obtained from a numerical map. This paper also introduces a method that resolves the three main problems needed to visualize 3-D terrain from contour lines such as correspondence, tiling, and branching. The virtual contour line is defined to extend a distorted contour line to have a similar shape to the corresponding contour line that is used, to generate 3-D surfaces. It helps that 3-D terrain is represented exactly and in detail.

  • PDF

Efficient Geometric Model Reconstruction using Contour Lines (외곽선을 이용한 효율적인 기하모델 재구성 기법)

  • Jung Hoe Sang;Kwon Koo Joo;Shin Byeong-Seok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.8
    • /
    • pp.418-425
    • /
    • 2005
  • 3D surface reconstruction is to make the original geometry of 3D objects from 2D geometric information. Barequet's algorithm is well known and most widely used in surface reconstruction. It tiles matched regions first, then triangulates clefts using dynamic programming. However it takes considerably long processing time while manipulating complex model. Our method tiles a simple region that does not have branches along minimally distant vertex pairs at once. When there are branches, our method divides contour lines into a simple region and clefts. We propose a fast and simple method that calculates medial axes using a minimum distance in cleft region. Experimental results show that our method can produce accurate models than the previous method within short time.

Multiresolutional Reconstruction from Contours (윤곽선을 이용한 다중해상도적 복원)

  • 민경하;이인권
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.11
    • /
    • pp.629-654
    • /
    • 2003
  • A new multiresolutional scheme that reconstructs a polygonal mesh from the set of contours is presented. In the first step, we apply a radial gradient method to extract the contours on the sampled slices from a volume data. After classifying the types of the edges on the contours, we represent the contour using the context-free grammar. The polygons between two neighboring contours are generated through the traversal of the derivation trees of the context-free grammar. The polygonal surface of the coarsest resolution is refined through the refinement of the contours, which is executed by casting more rays on the slices. The topologies between the polygonal surfaces of various resolutions are maintained from the fact that the radial gradient method preserves the topologies of the contours of various resolutions. The proposed scheme provides efficient computation and compression methods for the tiling procedure with the feature preservation.