• 제목/요약/키워드: continuum

검색결과 1,382건 처리시간 0.023초

노인의 회복탄력성이 우울과 정신적 웰빙에 미치는 영향: 춘천지역을 중심으로 (Resilience and Mental Health among Older Koreans: Focusing on Depression and Mental Well-being)

  • 용채은;유지영
    • 한국노년학
    • /
    • 제38권4호
    • /
    • pp.945-962
    • /
    • 2018
  • 본 연구는 회복탄력성이 노인의 정신건강에 미치는 영향에 대해 살펴봄으로써 고령사회 속 노인들의 삶의 질 향상을 위한 방안을 마련하는데 기초자료를 제공하는 것이 목적이다. 본 연구에서는 설문에 참여한 춘천지역 65세 이상 노인 2,004명이 분석에 포함되었으며, 정신건강의 부정적 측면으로 우울을, 긍정적 측면으로 정신적 웰빙을 선별하여 회복탄력성과 정신건강의 관계를 보다 통합적으로 살펴보았다. 회복탄력성과 우울의 관계는 로지스틱 회귀분석으로, 회복탄력성과 정신적 웰빙의 관계는 다중회귀분석을 통해 살펴보았다. 연구결과, 첫째, 노인의 회복탄력성은 우울과 유의미한 부적 관계를 보였다. 둘째, 노인의 회복탄력성은 정신적 웰빙과 유의미한 정적 관계를 보였다. 이상의 결과를 통해 회복탄력성이 노인 정신건강의 보호요인으로 작용함과 이를 활용하여 노인의 삶의 질 개선을 위한 효과적인 방안을 구축할 수 있는 가능성을 확인하였다.

Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach

  • Eltaher, Mohamed A.;Almalki, Talaal A.;Ahmed, Khaled I.E.;Almitani, Khalid H.
    • Advances in nano research
    • /
    • 제7권1호
    • /
    • pp.39-49
    • /
    • 2019
  • This paper focuses on two main objectives. The first one is to exploit an energy equivalent model and finite element method to evaluate the equivalent Young's modulus of single walled carbon nanotubes (SWCNTs) at any orientation angle by using tensile test. The calculated Young's modulus is validated with published experimental results. The second target is to exploit the finite element simulation to investigate mechanical buckling and natural frequencies of SWCNTs. Energy equivalent model is presented to describe the atomic bonding interactions and their chemical energy with mechanical structural energies. A Program of Nanotube modeler is used to generate a geometry of SWCNTs structure by defining its chirality angle, overall length of nanotube and bond length between two adjacent nodes. SWCNTs are simulated as a frame like structure; the bonds between each two neighboring atoms are treated as isotropic beam members with a uniform circular cross section. Carbon bonds is simulated as a beam and the atoms as nodes. A finite element model using 3D beam elements is built under the environment of ANSYS MAPDL environment to simulate a tensile test and characterize equivalent Young's modulus of whole CNT structure. Numerical results are presented to show critical buckling loads, axial and transverse natural frequencies of SWCNTs with different orientation angles and lengths. The understanding of mechanical behaviors of CNTs are essential in developing such structures due to their great potential in wide range of engineering applications.

High-resolution ALMA Study of the Proto-Brown-Dwarf Candidate L328-IRS

  • Lee, Chang Won;Kim, Gwanjeong;Myers, Philip C.;Saito, Masao;Kim, Shinyoung;Kwon, Woojin;Lyo, A-Ran;Soam, Archana;Kim, Mi-Ryang
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.39.1-39.1
    • /
    • 2018
  • We present our observational attempts to precisely measure the central mass of a proto-brown dwarf candidate, L328-IRS, in order to investigate whether L328-IRS is in the substellar mass regime. Observations were made for the central region of L328-IRS with the dust continuum and CO isotopologue line emission at ALMA band 6, discovering the detailed outflow activities and a deconvolved disk structure of a size of ${\sim}87AU{\times}{\sim}37AU$. We investigated the rotational velocities as a function of the disk radius, finding that its motions between 130 AU and 60 AU are partially fitted with a Keplerian orbit by a stellar object of ${\sim}0.30M_{\odot}$, while the motions within 60 AU do not follow any Keplerian orbit at all. This makes it difficult to lead a reliable estimation of the mass of L328-IRS. Nonetheless, our ALMA observations were useful enough to well constrain the inclination angle of the outflow cavity of L328-IRS as ${\sim}66^{\circ}$ degree, enabling us to better determine the mass accretion rate of ${\sim}8.9{\times}10^{-7}M_{\odot}yr-1$.From assumptions that the internal luminosity of L328-IRS is mostly due to this mass accretion process in the disk, or that L328-IRS has mostly accumulated the mass through this constant accretion rate during its outflow activity, its mass was estimated to be ${\sim}0.012-0.023M_{\odot}$, suggesting L328-IRS to be a substellar object. However, we leave our identification of L328-IRS as a proto-brown dwarf to be tentative because of various uncertainties especially regarding the mass accretion rate.

  • PDF

The Standard Processing of a Time Series of Imaging Spectral Data Taken by the Fast Imaging Solar Spectrograph on the Goode Solar Telescope

  • Chae, Jongchul;Kang, Juhyeong;Cho, Kyuhyoun
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.46.1-46.1
    • /
    • 2018
  • The Fast Imaging Solar Spectrograph (FISS) on the Goode Solar Telescope (GST) at Big Bear Solar Observatory is the imaging Echelle spectrograph developed by the Solar Astronomy Group of Seoul National University and the Solar and Space Weather Group of Korea Astronomy and Space Science Institute. The instrument takes spectral data from a region on the Sun in two spectral bands simultaneously. The imaging is done by the organization of intensity data obtained from the fast raster scan of the slit over the field of view. Since the scan repeats many times, the whole set of data can be used to construct the movies of monochromatic intensity at arbitrary wavelengths within the spectral bands, and those of line-of-sight velocity inferred from different spectral lines. So far there are two standard observing configurations: one recording the $H{\alpha}$ line and the Ca II 8542 line simultaneously, and the other recording the Na I D2 line and Fe I 5435 line simultaneously. We have developed the procedures to produce the standard data for each observing configuration. The procedures include the spatial alignment, the correction of spectral shift of instrumental origin, and the lambdameter measurement of the line wavelength. The standard data include the movie of continuum intensity, the movies of intensity and velocity inferred from a chromospheric spectral line, the movies of intensity and velocity inferred from a photospheric line. The processed standard data will be freely available online (fiss.snu.ac.kr) to be used for research and public outreach. Moreover, the IDL procedures will be provided on request as well so that each researcher can adapt the programs for their own research.

  • PDF

Computer modeling of elastoplastic stress state of fibrous composites with hole

  • Polatov, Askhad M.;Ikramov, Akhmat M.;Khaldjigitov, Abduvali A.
    • Coupled systems mechanics
    • /
    • 제8권4호
    • /
    • pp.299-313
    • /
    • 2019
  • The paper represents computer modeling of the deformed state of physically nonlinear transversally isotropic bodies with hole. In order to describe the anisotropy of the mechanical properties of transversally-isotropic materials a structurally phenomenological model has been used. This model allows representing the initial material in the form of the coupled isotropic materials: the basic material (binder) considered from the positions of continuum mechanics and the fiber material oriented along the anisotropy direction of the original material. It is assumed that the fibers perceive only the axial tensile-compression forces and are deformed together with the base material. To solve the problems of the theory of plasticity, simplified theories of small elastoplastic deformation have been used for a transversely-isotropic body, developed by B.E. Pobedrya. A simplified theory allows applying the theory of small elastoplastic deformations to solve specific applied problems, since in this case the fibrous medium is replaced by an equivalent transversely isotropic medium with effective mechanical parameters. The essence of simplification is that with simple stretching of composite in direction of the transversal isotropy axis and in direction perpendicular to it, plastic deformations do not arise. As a result, the intensity of stresses and deformations both along the principal axis of the transversal isotropy and along the perpendicular plane of isotropy is determined separately. The representation of the fibrous composite in the form of a homogeneous anisotropic material with effective mechanical parameters allows for a sufficiently accurate calculation of stresses and strains. The calculation is carried out under different loading conditions, keeping in mind that both sizes characterizing the fibrous material fiber thickness and the gap between the fibers-are several orders smaller than the radius of the hole. Based on the simplified theory and the finite element method, a computer model of nonlinear deformation of fibrous composites is constructed. For carrying out computational experiments, a specialized software package was developed. The effect of hole configuration on the distribution of deformation and stress fields in the vicinity of concentrators was investigated.

Reliability-based combined high and low cycle fatigue analysis of turbine blade using adaptive least squares support vector machines

  • Ma, Juan;Yue, Peng;Du, Wenyi;Dai, Changping;Wriggers, Peter
    • Structural Engineering and Mechanics
    • /
    • 제83권3호
    • /
    • pp.293-304
    • /
    • 2022
  • In this work, a novel reliability approach for combined high and low cycle fatigue (CCF) estimation is developed by combining active learning strategy with least squares support vector machines (LS-SVM) (named as ALS-SVM) surrogate model to address the multi-resources uncertainties, including working loads, material properties and model itself. Initially, a new active learner function combining LS-SVM approach with Monte Carlo simulation (MCS) is presented to improve computational efficiency with fewer calls to the performance function. To consider the uncertainty of surrogate model at candidate sample points, the learning function employs k-fold cross validation method and introduces the predicted variance to sequentially select sampling. Following that, low cycle fatigue (LCF) loads and high cycle fatigue (HCF) loads are firstly estimated based on the training samples extracted from finite element (FE) simulations, and their simulated responses together with the sample points of model parameters in Coffin-Manson formula are selected as the MC samples to establish ALS-SVM model. In this analysis, the MC samples are substituted to predict the CCF reliability of turbine blades by using the built ALS-SVM model. Through the comparison of the two approaches, it is indicated that the reliability model by linear cumulative damage rule provides a non-conservative result compared with that by the proposed one. In addition, the results demonstrate that ALS-SVM is an effective analysis method holding high computational efficiency with small training samples to gain accurate fatigue reliability.

인물사: 의학사 교육을 통한 의학전문직업성 함양의 한 가지 방법 (History in Lives: A Way of Cultivating Medical Professionalism through Medical History Education)

  • 박승만;김평만
    • 의학교육논단
    • /
    • 제24권1호
    • /
    • pp.63-71
    • /
    • 2022
  • How can the history of medicine be used to cultivate medical professionalism? This study presents education using the lives of historical figures as a method based on the teaching experience of the course "Leadership of the Healers" for first-year students at the College of Medicine of the Catholic University of Korea. Existing methods, represented by the Osler method, have several limitations: first, they limit the subject of the history of medicine to certain established doctors; second, they describe medical history as a continuum of progress; and third, they present abstract virtues without context, making it difficult to apply what has been learned to specific situations. These limitations are why the lives of historical figures have not been used actively in medical education in recent years. However, education using the lives of historical figures also has clear advantages, such as the power to vividly convey the various elements of medical professionalism. This study proposes an alternative method. The characteristics of the new method can be summarized in two ways. First, it emphasizes the specific context surrounding historical figures and the choices made in specific historical circumstances, rather than presenting abstract virtues outside of the historical context, making students ponder the reality they face and the choices they make. Second, it reveals both the hidden actors and the bright and dark areas of history by selecting diverse multi-dimensional figures.

Bending of axially functionally graded carbon nanotubes reinforced composite nanobeams

  • Ahmed Drai;Ahmed Amine Daikh;Mohamed Oujedi Belarbi;Mohammed Sid Ahmed Houari;Benoumer Aour;Amin Hamdi;Mohamed A. Eltaher
    • Advances in nano research
    • /
    • 제14권3호
    • /
    • pp.211-224
    • /
    • 2023
  • This work presents a modified analytical model for the bending behavior of axially functionally graded (AFG) carbon nanotubes reinforced composite (CNTRC) nanobeams. New higher order shear deformation beam theory is exploited to satisfy parabolic variation of shear through thickness direction and zero shears at the bottom and top surfaces.A Modified continuum nonlocal strain gradient theoryis employed to include the microstructure and the geometrical nano-size length scales. The extended rule of the mixture and the molecular dynamics simulations are exploited to evaluate the equivalent mechanical properties of FG-CNTRC beams. Carbon nanotubes reinforcements are distributed axially through the beam length direction with a new power graded function with two parameters. The equilibrium equations are derived with associated nonclassical boundary conditions, and Navier's procedure are used to solve the obtained differential equation and get the response of nanobeam under uniform, linear, or sinusoidal mechanical loadings. Numerical results are carried out to investigate the impact of inhomogeneity parameters, geometrical parameters, loadings type, nonlocal and length scale parameters on deflections and stresses of the AFG CNTRC nanobeams. The proposed model can be used in the design and analysis of MEMS and NEMS systems fabricated from carbon nanotubes reinforced composite nanobeam.

Experimental Techniques for Surface Science with Synchrotron Radiation

  • Jonhnson, R.L.;Bunk, O.;Falkenberg, G.;Kosuch, R.;Zeysing, J.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1998년도 제14회 학술발표회 논문개요집
    • /
    • pp.17-17
    • /
    • 1998
  • Synchrotron radiation is produced when charged particles moving with relativistic velocities a are accelerated - for example, deflected by the bending magnets which guide the electron or p positrons in circular accelerators or storage rings. By using special focusing magnetic lattices i in the particle accelerators it is possible to make the dimensions of the particle beam very small with a hi맹 charge density which results in a light source with high b디lIiance. Synchrotron light h has important properties which make it ideal for a wide range of investigations in surface s science. The fact that the spectrum of electromagnetic radiation emitted in a bending magnet e extends in a continuum from the 얹r infra red region to hard x-rays means that it is id않I for a v variety of spectroscopic studies. Since there are no convenient lasers, or other really bright l light sources, in the vacuum ultraviolet and soft x-ray re.밍ons the development of synchrotron r radiation has enabled enormous advances to be made in this di펌C비t spectr따 re밍on. P Polarization-dependent measurements, for ex없nple ellipsometry or circular dichroism studies a are possible because the radiation has a well-defined polarization - linear in the plane of orbit w with additional right-circular, or left-circular, components for emission an생es above, or below, t the horizontal, respectively. Since the synchrotron light is emitted from a bunch of charge c circulating in a ring the light is emitted with a well-defined time structure with a short flash of l light every time a bunch passes an exit port. The time structure depends on the size of the ring a and the number and sequence of filling of the bunches. A pulsed light source enables time¬r resolved studies to be performed which provide direct information on the lifetimes and decay m modes of excited states and in addition opens up the possibility of using time of flight t techniques for spectroscopic studies. The fact that synchrotron radiation is produced in a clean u ultrahi야 vacuum environment is of gr않t importance for surce science studies. The current t비rd generation synchrotron light sources provide exceptionally high baliance and stability a and open up possibilities for experiments which would have been inconceivable only a short time ago.

  • PDF

사출성형 섬유강화플라스틱 볼트 연결부의 강도 평가를 위한 실험적 연구 (An Experimental Study for the Strength Evaluation of Bolted Connection in Resin Transfer Molding Fiber Reinforced Polymeric Plastic)

  • 최진우;김선희
    • 도시과학
    • /
    • 제11권2호
    • /
    • pp.25-30
    • /
    • 2022
  • Resin Transfer Molding FRP (RTM FRP) is a fiber reinforced polymeric plastic which is manufactured by applying pressure to fibers, injecting resin into a mold, and then impregnating it. RTM FRP is a new construction material suitable for producing non-continuum structural elements such as sole plate because it has excellent strength and can produce many members in a short time. In this study, experiments were conducted to estimate the capacity of the bolted connection of RTM FRP. First, a tensile test was conducted to confirm the mechanical properties such as the tensile strength of the RTM FRP to be used for the bolted connection experiments. In addition, experiments were conducted on the bolted connection with the thickness of the RTM FRP and the edge distance of the bolt as variables. In the first experiment, F4.8 bolts were used, and shear failure of the bolt occurred before the RTM FRPs were failed. The F4.8 bolt is a general structural bolts used for the sole plate of a bridge bearing, and it was confirmed that the RTM FRP has a higher bold bearing strength than the shear strength of a F4.8 bolt. In the second experiment, G12.9 bolts were used, and shear failure of the bolt and bearing failure of the RTM FRP occurred simultaneously. In addition, as the thickness of the RTM FRP and the edge length of the bolt increased, the strength of the joint increased. When analogized with the bearing fracture equation of steel plate, the bolted connection of RTM FRP showed a bearing strength coefficient of 0.420 to 0.549 compared to the tensile strength, and it is considered that further research is needed.