• Title/Summary/Keyword: continuum

Search Result 1,382, Processing Time 0.027 seconds

A Study on the Development of Electrolysis System with Vertically Circulating Mercury Capillary Bundle Electrode and its Characteristics (수직형 순환식 수은 모세관 다발체 전극 전해계의 개발과 그 특성 연구)

  • Kim, Kwang-Wook;Lee, Eil-Hee;Shin, Young-Joon;Yoo, Jae-Hyung;Park, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.228-236
    • /
    • 1996
  • An electrolysis system with a vertically circulating mercury capillary bundle electrode was developed with a very large electrode area in a minimum space. This system was operated by forcedly feeding mercury and aqueous solution containing metal ion into a fiber bundle packed densely within a small porous glass tube. In order to test the characteristics and stability of the electrolysis system, the reduction voltammograms of uranyl and ferric ions were measured with changes of the mercury flow rate and the aqueous flow rate. The aqueous flow rate had a large effect on the electrochemical reaction of metal ion occurring at the interface between the mercury and the aqueous solution and had to be regulated as an appropriate value to have a good limiting current shape. The limiting current was linearly proportional to the aqueous flow rate, and complete reductions of uranyl and ferric ions were rapidly and continuously accomplished at the potential showing limiting current. With a mercury flow rate high enough to keep a capillary continuum of mercury in the fiber bundle, the mercury flow rate had almost no effect on the electrochemical reaction. This system was confirmed to be effective and stable enough to control rapidly and continuously the oxidation state of metal ions fed into the system under an appropriate aqueous flow rate.

  • PDF

Hydrogeological Stability Study on the Underground Oil Storage Caverns by Numerical Modeling (수치모델링을 이용한 지하원유비축시설의 수리지질학적 안정성 연구)

  • 김경수;정지곤
    • The Journal of Engineering Geology
    • /
    • v.12 no.1
    • /
    • pp.35-51
    • /
    • 2002
  • This study aims to establish the methodology for design of an optimum water curtain system of the unlined underground oil storage cavern satisfying the requirements of hydrodynamic performance in a volcanic terrain of the south coastal area. For the optimum water curtain system in the storage facility, the general characteristics of groundwater flow system in the site are quantitatively described, i.e. distribution of hydraulic gradients, groundwater inflow rate into the storage caverns, and hydrogeologic influence area of the cavern. In this study, numerical models such as MODFLOW, FracMan/MAFIC and CONNECTFLOW are used for calculating the hydrogeological stability parameters. The design of a horizontal water curtain system requires considering the distance between water curtain and storage cavern, spacing of the water curtain boreholes, and injection pressure. From the numerical simulations at different scales, the optimum water curtain systems satisfying the containment criteria are obtained. The inflow rates into storage caverns estimated by a continuum model ranged from about 120 m$^3$/day during the operation stage to 130~140m$^3$/day during the construction stage, whereas the inflow rates by a fracture network model are 80~175m$^3$/day. The excavation works in the site will generate the excessive decline of groundwater level in a main fracture zone adjacent to the cavern. Therefore, the vertical water curtain system is necessary for sustaining the safe groundwater level in the fracture zone.

Free Vibration Analysis of a Degenerated Timoshenko Beam Including the Effect of Shear Deformation and Rotatory Inertia (전단변형(剪斷變形)과 회전관성(回轉慣性)을 고려(考慮)한 Timoshenko 보의 자유진동(自由振動) 해석(解析))

  • Byun, Dong Kyun;Shin, Young Shik;Jang, Jong Tak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.109-122
    • /
    • 1983
  • An accurate thick beam element (TB4) which includes the effects of the shear deformation and rotatory inertia has been degenerated from the three dimensional continuum by employing the Timoshenko beam assumptions. The proposed TB4 element has four nodes and two degrees of freedom at each node, totally eight degrees of freedom. The transverse deflection W and plane rotation ${\theta}$ with the cubic interpolation functions are selected as nodal variables. The element characteristics are formulated by discretizing the beam equations of motion, using the Galerkin weighted residual method, and are numerically integrated by the reduced shear integration technique, using the three-point Gauss quadrature with the various shear coefficients. Several numerical examples are analyzed to demonstrate the accuracy and the monotonic convergence behavior of the proposed TB4 beam element. The result indicates that the TB4 element shows the more excellent performance and the monotonic convergence behavior than the other existing Timoshenko beam type elements for the whole range of the beam aspect ratios, in both static and free vibration analyses.

  • PDF

Exhaust Plume Behavior Study of MMH-NTO Bipropellant Thruster (MMH-NTO 이원추진제 추력기의 배기가스 거동 해석 연구)

  • Kim, Hyeonah;Lee, Kyun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.300-309
    • /
    • 2017
  • A spacecraft obtains a reaction momentum required for an orbit correction and an attitude control by exhausting a combustion gas through a small thruster in space. If the exhaust plume collides with spacecraft surfaces, it is very important to predict the exhaust plume behavior of the thruster when designing a satellite, because a generated disturbance force/torque, a heat load and a surface contamination can yield a life shortening and a reduction of the spacecraft function. The purpose of the present study is to ensure the core technology required for the spacecraft design by analyzing numerically the exhaust gas behavior of the 10 N class bipropellant thruster for an attitude control of the spacecraft. To do this, calculation results of chemical equilibrium reaction between a MMH for fuel and a NTO for oxidizer, and continuum region of the nozzle inside are implemented as inlet conditions of the DSMC method for the exhaust plume analysis. From these results, it is possible to predict a nonequilibrium expansion such as a species separation and a backflow in the vicinity of the bipropellant thruster nozzle.

The Understanding of Depression Subtypes (우울증 아형들의 이해)

  • Han, Chang-Hwan;Ryu, Seong Gon
    • Korean Journal of Biological Psychiatry
    • /
    • v.8 no.1
    • /
    • pp.20-36
    • /
    • 2001
  • The debate about whether depressive disorders should be divided into categories or arrayed along a continuum has gone for decade, without resolution. In our review, there is more evidence consistent with the spectrum concept than there is with the idea that depressive disorders constitute discrete clusters marked by relatively discontinuous boundaries. First, "depression spectrum", "is there a common genetic factors in bipolar and unipolar affective disorder", "threshold model of depression" and "bipolar spectrum disorder" are reviewed. And, a new subtype of depression is so called SeCA depression that is a stressor-precipitated, cortisol-induced, serotonin-related, anxiety/aggression-driven depression. SeCA depression is discussed. But, there is with the idea that depressive disorders constitute discrete subtypes marked by relatively discontinuous boundaries. This subtypes of depressive disorder were reviewed from a variety of theoretical frames of reference. The following issues are discussed ; Dexamethasone suppression test(DST), TRH stimulation test, MHPG, Temperament Character Inventory(TCI), and heart rate variability(HRV).

  • PDF

A Case Study of Road Upheaval caused by Slope Movement, and Verification of Reinforcement using Real-Time Monitoring (암반비탈면 활동에 의한 도로 융기현상 사례 연구 및 실시간 모니터링을 이용한 대책공법 검증)

  • Lee, Jong-Hyun;Koo, Ho-Bon;Kim, Seung-Hyun;Kim, Seung-Hee
    • The Journal of Engineering Geology
    • /
    • v.21 no.3
    • /
    • pp.221-230
    • /
    • 2011
  • The movement of rock cut slopes may result in upheaval of an adjacent road. Because most cut slopes consist of rock, road upheaval due to the movement of a cut slope is a rare phenomenon in Korea. We found that the movement of rock slopes which are heavily weathered and with strongly developed weak zones is governed by circular failure of the overall rock formation rather than by failure along discontinuities. The results of a numerical analysis revealed that the application of a ubiquitous joint model in a continuum analysis is appropriate for anisotropic rocks (e.g., schist) and for slopes for which the stability is influenced by a particular discontinuity. The results of a field investigation and numerical analyses suggest that retaining walls and anchors should be used to stabilize rock slopes and that real-time monitoring equipment should be installed to assess the reinforcing effect of the remedial measures.

Development of Structure Analysis Program for Jointed Concrete Pavement Applying Load Discretization Algorithm (하중변환 알고리듬을 적용한 줄눈 콘크리트 포장해석 프로그램 개발)

  • Yun, Tae-Young;Kim, Ji-Won;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.5 no.4 s.18
    • /
    • pp.1-11
    • /
    • 2003
  • Recently, the new pavement design method considering Korean environment and the specification for improving performance of pavement are being developed in Korea. The Jointed Concrete Pavement Program Applying Load Discretization Algorithm (called HEART-JCP) is one of the results of Korea Pavement Research Project in Korea. HEART-JCP program is developed to analyze various loading condition using the load discretization algorithm without mesh refinement. In addition, it can be modified easily into multi-purpose concrete pavement nidyses program because of the modularized structure characteristic of HEART-JCP. The program consists of basic program part and load discretization part. In basic program part, the displacement and stress are computed in the concrete slab, sub-layer, and dowel bar, which are modeled with plate/shell element, spring element and beam element. In load discretization program part, load discretization algorithm that was used for the continuum solid element is modified to analyze the model with plate and shell element. The program can analyze the distributed load, concentrated load, thermal load and body load using load discretization algorithm. From the result of verification and sensitivity study, it was known that the loading position, the magnitude of load, and the thickness of slab were the major factors of concrete pavement behavior as expected. Since the result of the model developed is similar to the results of Westergaard solution and ILLISLAB, the program can be used to estimate the behavior of jointed concrete pavement reasonably.

  • PDF

Real-time Fluid Animation using Particle Dynamics Simulation and Pre-integrated Volume Rendering (입자 동역학 시뮬레이션과 선적분 볼륨 렌더링을 이용한 실시간 유체 애니메이션)

  • Lee Jeongjin;Kang Moon Koo;Kim Dongho;Shin Yeong Gil
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.1
    • /
    • pp.29-38
    • /
    • 2005
  • The fluid animation procedure consists of physical simulation and visual rendering. In the physical simulation of fluids, the most frequently used practices are the numerical simulation of fluid particles using particle dynamics equations and the continuum analysis of flow via Wavier-Stokes equation. Particle dynamics method is fast in calculation, but the resulting fluid motion is conditionally unrealistic The method using Wavier-Stokes equation, on the contrary, yields lifelike fluid motion when properly conditioned, yet the complexity of calculation restrains this method from being used in real-time applications. Global illumination is generally successful in producing premium-Duality rendered images, but is also excessively slow for real-time applications. In this paper, we propose a rapid fluid animation method incorporating enhanced particle dynamics simulation method and pre-integrated volume rendering technique. The particle dynamics simulation of fluid flow was conducted in real-time using Lennard-Jones model, and the computation efficiency was enhanced such that a small number of particles can represent a significant volume. For real-time rendering, pre-integrated volume rendering method was used so that fewer slices than ever can construct seamless inter-laminar shades. The proposed method could successfully simulate and render the fluid motion in real time at an acceptable speed and visual quality.

Risperidone as a Janus in Mood Disorder (기분장애에서 risperidone의 양면성)

  • Yoon, Doh Joon
    • Korean Journal of Biological Psychiatry
    • /
    • v.4 no.2
    • /
    • pp.198-210
    • /
    • 1997
  • To examine the double-faced thymoleptic(antidepressant and antimanic) effects of risperidone in mood disorders, this article reviews the psychotropic-induced mania, thymoleptic effects of antipsychotics, therapeutic effects of risperidone and risperidone(RIS)-induced mania(RIM) in mood disorders, risk factors of RIM, possible neurochemical mechanism of these thymoleptic effects, pathophysiological and clinical significance of thymoleptic effects, and suggestive clinical guideline of RIS in mood disorders. RIS appeared effective for bipolar disorder at a lower dose than that recommended for schizophrenia, especially in the cases of maintenance of mood stabilizers, and gradual titration from low doses. Manic induction/exacerbation can occur by chance during RIS treatment in mood disorders, schizoaffective disorders, and schizophrenias. The possible risk factors for RIM are refractory mood disorder, especially in bipolar I disorder with poor initial response ; refractory schizoaffective disorders, especially in bipolar type with poor initial response ; refractory chronic schizophrenias, especially with initial responses ; psychotic features ; higher initial doses ; rapid titration ; combined therapy with antidepressants in refractory depression ; and RIS monotherapy in mania/hypomania. RIS is a drug that preferentially block 5-HT2 receptors. The effects of low dose are due mainly to the blockade of 5-HT2 receptors. There are more gradual increase in D2 blockade with increasing dose and this D2 blocking properties become apparent at higher doses. This may be related to a modulation of dopaminergic transmission by 5-HT2 antagonism at lower doses with the direct action of RIS on DA receptors coming into play at higher dose. The serotonergic antagonistic effect may be important for its effects on depressive symptoms. This, together with adequate blo-ckade of D2 receptors, may not necessarily lead to destabilization of mood disorder, but rather to more therapeutic effects. Therefore, this dose-receptor affinity relationship with both antidepressant and antimanic effects according to treatment duration can explain a continuum of antidepressant effect, antimanic effect, behavioral stimulation, and manic/hypomanic induction/exacerbation. It was the recognition of a useful psychiatric side effects by a thoughtful observer with fertile minds that led to their ultimate utilization as psychotropic drugs, i.e., phenothiazine, MAOI, TCA, and lithium. And, in vivo pharmacological challenge by novel psychotropics, as a neurochemical probe, with more specific actions is a useful tool to select pharmacologically homogeneous subgroup of the same phenotypical(clinical) condition, to further study the unknown underlying pathogenesis of various mental illnesses. Finally, RIS may be a useful alternative or adjunctive drug for patients with mood disorders without psychotic features or refractory to treatment with standard antipsychotic drugs. The more conservative doses(tirated slowly from 1-3 mg/d) of RIS, and maintenance of mood stabilizer in the cases with risk factors of RIM are recommended in mood disorder.

  • PDF

Non-Local Plasticity Constitutive Relation for Particulate Composite Material Using Combined Back-Stress Model and Shear Band Formation (비국부 이론을 이용한 입자 강화 복합재 이중후방응력 소성 구성방정식 모델 및 전단밴드 분석)

  • Yun, Su-Jin;Kim, Shin Hoe;Park, Jae-Beom;Jung, Gyoo Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1057-1068
    • /
    • 2014
  • This paper proposes elastic-plastic constitutive relations for a composite material with two phases-inclusion and matrix phases-using a homogenization scheme. A thermodynamic framework is employed to develop non-local plasticity constitutive relations, which are specifically represented in terms of the second-order gradient terms of the internal state variables. A combined two back-stress evolution equation is also established and the degradation of the state and internal variables is expressed by continuum damage mechanics in terms of the damage factor. Then, deformation localization is analyzed; the analysis results show that the proposed model yields a wide range of shear band formation behaviors depending on the evolution of the specific internal state variables. The analysis results also show good agreement with the results of simplified Rice instability analyses.