• Title/Summary/Keyword: continuum

Search Result 1,382, Processing Time 0.025 seconds

Critical Success Factors for the Adoption of Health Management Information Systems in Public Hospitals in Zimbabwe

  • Caleb Manjeese;Indira Padayachee
    • Journal of Information Science Theory and Practice
    • /
    • v.11 no.2
    • /
    • pp.82-103
    • /
    • 2023
  • The Zimbabwean healthcare sector faces huge challenges due to increased demands for improved services for a growing number of patients with fewer resources. The use of information and communications technologies, prevalent in many industries, but lacking in Zimbabwean healthcare, could increase productivity and innovation. The adoption of health management information systems (HMISs) can lead to improved patient safety and high-level patient care. These technologies can change delivery methods to be more patient focused by utilising integrated models and allowing for a continuum of care across healthcare providers. However, implementation of these technologies in the health care sector remains low. The purpose of this study is to demonstrate the advantages to be attained by using HMISs in healthcare delivery and to ascertain the factors that influence the uptake of such systems in the public healthcare sector. A conceptual model, extending the technology, organization, and environment framework by means of other adoption models, underpins the study of adoption behavior. A mixed method methodology was used to conduct the study. For the quantitative approach, questionnaires were used to allow for regression analysis. For the qualitative approach, thematic analysis was used to analyse interview data. The results showed that the critical success factors (namely, relative advantage, availability, complexity, compatibility, trialability, observability, management support, information and communication technology expertise, communication processes, government regulation, infrastructure support, organizational readiness, industry and competitive support, external support, perceived ease of use, perceived usefulness, attitude, and intention to use) influenced adoption of HMISs in public hospitals in Zimbabwe.

Modeling Direct Shear Test of Crushed Stone Using DEM (개별요소법을 이용한 쇄석재료의 직접전단시험 모델링)

  • Cho, Nam-Kak;Yoo, Chung-Sik;Lee, Dae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.15-23
    • /
    • 2008
  • In this study, modeling shear characteristics of a coarse material mainly containing crushed stones were implemented using PFC2D, a commercially available code based on DEM(Discrete Element Method). Using the DEM code, this study provides the methodology considering the shear characteristics due to a irregular grain shape, GSD(Grain Size Distribution) and porosity of coarse material which are not effectively incorporated in conventional continuum numerical codes. Direct shear test was simulated for the GSD and porosity generated sample using the code and the simulated results showed very good agreement with the laboratory test results. The current modeling approach can be applied to other coarse materials having various GSD and porosities. Using such application, prediction of the strength characteristics of coarse material in field scale would be possible, which is limited in laboratory scale so far.

Global Stability of Geosynthetic Reinforced Segmental Retaining Walls in Tiered Configuration (계단식 블록식 보강토 옹벽의 전체 안전성)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.9
    • /
    • pp.23-32
    • /
    • 2008
  • This paper presents the global stability of geosynthetic reinforced segmental retaining walls in tiered configuration. Four design cases of walls with different geometries and offset distances were analyzed based on the FHWA and NCMA design guidelines and the discrepancies between the different guidelines were identified. A series of global slope stability analyses were conducted using the limit-equilibrium analysis and the continuum mechanics based shear strength reduction method with the aim of identifying failure patterns and the associated factors of safety. The results indicated among other things that the FHWA design approach yields conservative results both in the external and internal stability calculations, i.e., lower factors of safety, than the NCMA design approach. It was also found that required reinforcement lengths are usually governed by the global slope stability requirement rather than the external stability calculations. Also shown is that the required reinforcement lengths for the upper tiers are much longer than those based on the current design guidelines.

Efficacy of Blanket Vegetation Mats on Soil and Native Groundcover Plants under Treatment of High Concentration Deicing Salt (고농도 제설제 처리에서 토양 및 자생 초화류에 미치는 Blanket 식생매트의 효용성)

  • Ju, Jin Hee;Lee, Je Man;Kim, Won Tae;Lim, Byung Ok;Seo, Nam Kyu;Yoon, Yong Han
    • Journal of Environmental Science International
    • /
    • v.31 no.3
    • /
    • pp.247-254
    • /
    • 2022
  • This study investigated the effect of vegetation mat on plant growth and salt reduction in the soil treated with high concentration deicing salt. In order to measure soil chemical characteristics and plant growth, three native groundcover plants (Dendranthema zawadskii var. latilobum, Dendranthema boreale, and Kalimeris yomena) were grown in each of the three plastic containers (50.0 cm width × 35.0 cm length × 8.5 cm deep) with a high concentration treatment of calcium chloride deicing salt. There were two treatments: control, and BVM that combines B (blanket) and VM (vegetation mat). 1,600 g of soil was placed on the top of the drainage layer with 290 g of perlite, 100 seeds each of the three native plants with three repetitions were sowed, and 10 g/L of calcium chloride deicing salt was added in the treatment. As a result of the chemical properties of soil, soil in control treatment was acidic and soil electrical conductivity in BVM was the lowest. Also, exchangeable cations (K+, Ca2+, Na+, and Mg2+) in soil and all the three plants were significantly decreased in the BVM treatment. Meanwhile, the germination rate of Dendranthema zawadskii var. latilobum was the highest under high concentration deicing salt in compared to the two plants. Overall, three native groundcover plant growth was higher in the BVM than control treatment significantly. These results suggest that the treatment of blanket vegetation mat has a positive effect on soil and plant growth in soil damaged by deicing salt.

The first five-year results of Seoul National University AGN Monitoring Project

  • Wang, Shu;Woo, Jong-Hak;Son, Donghoon;Shin, Jaejin;Cho, Hojin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.54.4-55
    • /
    • 2021
  • The Seoul National University AGN Monitoring Project (SAMP) is a welldesigned long-term AGN reverberation mapping project. SAMP focuses on the luminous AGNs out to z~0.5 with relative long time lags between AGN continuum and broad emission lines and aims to probe the high-end of the AGN broad line region (BLR) size-luminosity (R-L) relation. The pilot observations started in October 2015 for 100 AGNs to confirm the variability and the H and [O III] emission line strengths. Based on the initial variability test, 48 quasars has been continued spectroscopic monitoring since Feb. 2016 with Lick 3m and MDM 2.4m telescopes with a cadence of ~20 days. Supporting photometric monitoring in B and V band was conducted at multiple facilities including the MDM 1.3m, LOAO, and DOAO telescopes with a cadence of ~10 days. By the time of Feb. 2021, we have obtained five years spectroscopic and photometric data. More than 30 AGNs shows significant variability in five-year baseline and 16 of them show well detected lags between B-band and H. Here, we report some examples of SAMP light curves and lag detections using the first five-year data as well as the location of our 16 targets in the AGN BLR R-L relation. These measurements are consistent with the existing R-L relation and located at the high-end. With the coming data, SAMP are hopefully to report more AGNs with well detected lags. Our results demonstrate the general feasibility and potential of long-term reverberation project with medium cadence for luminous AGNs.

  • PDF

Complex organic molecules detected in twelve high mass star forming regions with ALMA

  • Baek, Giseon;Lee, Jeong-Eun;Hirota, Tomoya;Kim, Kee-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.37.3-38
    • /
    • 2021
  • One of the key questions on star formation is how the organic molecules are synthesized and delivered to the planets and comets since they are the building blocks of prebiotic molecules such as amino acid, which is thought to contribute to bringing life on Earth. Recent astrochemical models and experiments have explained that complex organic molecules (COMs; molecules composed of six or more atoms) are produced on the dust grain mantles in cold and dense gas in prestellar cores. However, the chemical networks and the roles of physical conditions on chemistry are not still understood well. To address this question, hot (> 100 K) cores in high mass young stellar objects (M > 8 Msun) are great laboratories due to their strong emissions and larger samples than those of low-mass counterparts. In addition, CH3OH masers, which have been mostly found in high mass star forming regions, can provide constraints due to their very unique emerging mechanisms. We investigate twelve high mass star forming regions in ALMA band 6 observation. They are associated with 44/95 GHz Class I and 6.7 GHz Class II CH3OH masers, implying that the active accretion processes are ongoing. For these previously unresolved regions, 66 continuum peaks are detected. Among them, we found 28 cores emitting COMs and specified 10 cores associated with 6.7 GHz Class II CH3OH masers. The chemical diversity of COMs is found in cores in terms of richness and complexity; we identified up to 19 COMs including oxygen- and nitrogen-bearing molecules and their isotopologues in a core. Oxygen-bearing molecules appear to be abundant and more complex than nitrogen-bearing species. On the other hand, the COMs detection rate steeply grows with the gas column density, which can be attributed to the effective COMs formation in dense cores.

  • PDF

Is there a stellar companion in hybrid star HD 81817?

  • Bang, Tae-Yang;Lee, Byeong-Cheol;Perdelwitz, V.;Jeong, Gwang-Hui;Han, Inwoo;Oh, Hyeong-il;Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.64.2-64.2
    • /
    • 2019
  • HD 81817 is known as a hybrid star. Hybrid stars have both cool stellar wind properties and UV or even X-ray emission features of highly ionized atoms in their spectra. A white dwarf companion has been suggested as the source of UV or X-ray features. HD 81817 has been observed since 2004 as a part of our radial velocity (RV) survey program to search for exoplanets around K giant stars using the Bohyunsan Observatory Echelle Spectrograph (BOES) at the 1.8 m telescope of Bohyunsan Optical Astronomy Observatory (BOAO) in Korea. We obtained 84 RV measurements between 2004 and 2018 for HD 81817 and found two periodic RV variations. The obtained amplitudes of RV periods are around 200 m/s, which are significantly lower than that expected from a white dwarf companion. Furthermore, our re-analysis of the IUE spectra used by Reimers (1984) shows that the excess in UV emission can easily be explained by a pseudo-continuum of unresolved emission lines originating in the extended chromosphere of the star. We thus conclude that there are no companions of stellar mass to HD 81817. Meanwhile, we analyzed two periodicities in RV measurements and conclude that the period of 627.9 days is caused by intrinsic stellar activities based on H alpha equivalent width (EW) variations of a similar period. On the other hand, the period of 1047.8 days is likely to be caused by substellar companion which has a minimum mass of 27.6 MJUP, a semi-major axis of 3.3 AU, and an eccentricity of 0.17 assuming the stellar mass of 4.3 M for HD 81817. The inferred mass puts HD 81817 b in the brown dwarf desert.

  • PDF

Grain Growth Revealed by Multi-wavelength Analysis of Non-axisymmetric Substructures in the Protostellar Disk WL 17

  • Han, Ilseung;Kwon, Woojin;Aso, Yusuke
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2020
  • Disks around protostars are the birthplace of planets. The first step toward planet formation is grain growth from ㎛-sized grains to mm/cm-sized grains in a disk, particularly in dense regions. In order to study whether grains grow and segregate at the protostellar stage, we investigate the ALMA Band 3 (3.1 mm) and 7 (0.87 mm) dust continuum observations of the protostellar disk WL 17 in ρ Ophiuchus L1688 cloud. As reported in a previous study, the Band 3 image shows substructures: a narrow ring and a large central hole. On the other hand, the Band 7 image shows different substructures: a non-axisymmetric ring and an off-center hole. The two-band observations provide a mean spectral index of 2.3, which suggests the presence of mm/cm-sized large grains. Its non-axisymmetric distribution may imply dust segregation between small and large grains. We perform radiative transfer modeling to examine the size and spatial distributions of dust grains in the WL 17 disk. The best-fit model suggests that large grains (>1 cm) exist in the disk, settling down toward the midplane, whereas small grains (~10 ㎛) well mixed with gas are distributed off-center and non-axisymmetrically in a thick layer. The low spectral index and the modeling results suggest that grains rapidly grow at the protostellar stage and that grains differently distribute depending on sizes, resulting in substructures varying with observed wavelengths. To understand the differential grain distributions and substructures, we discuss the effects of the protoplanet(s) expected inside the large hole and the possibility of gravitational instability.

  • PDF

Discovery of a Radio Relic in the Massive Merging Cluster SPT-CL J2023-5535 from the ASKAP-EMU Pilot Survey

  • Kim, HyeongHan;Jee, M. James;Rudnick, Lawrence;Parkinson, David;Finner, Kyle;Yoon, Mijin;Lee, Wonki;Brunetti, Giangranco;Bruggen, Marcus;Collier, Jordan D.;Hopkins, Andrew M.;Michalowski, Michal J.;Norris, Ray P.;Riseley, Chris
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.30.1-30.1
    • /
    • 2020
  • The ASKAP-EMU survey is a deep wide-field radio continuum survey designed to cover the entire southern sky and a significant fraction of the northern sky up to +30°. Here, we report a discovery of a radio relic in the merging cluster SPT-CL J2023-5535 at z=0.23 from the ASKAP-EMU pilot 300 square degree survey (800-1088 MHz). The deep high-resolution data reveal a ~2 Mpc-scale radio halo elongated in the east-west direction, coincident with the intracluster gas. The radio relic is located at the western edge of this radio halo stretched ~0.5 Mpc in the north-south orientation. The integrated spectral index of the radio relic within the narrow bandwidth is α1088MHz800MHz = -0.76 ± 0.06. Our weak-lensing analysis shows that the system is massive (M200 = 1.04 ± 0.36 × 1015M⊙) and composed of at least three subclusters. We suggest a scenario, wherein the radio features arise from the collision between the eastern and middle subclusters. Furthermore, the direct link between the local AGN and the relic along with the discontinuities in X-ray observation hint us that we are looking at the site of re-acceleration.

  • PDF

Response of steel pipeline crossing strike-slip fault in clayey soils by nonlinear analysis method

  • Hadi Khanbabazadeh;Ahmet Can Mert
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.409-424
    • /
    • 2023
  • Response of the pipeline crossing fault is considered as the large strain problem. Proper estimation of the pipeline response plays important role in mitigation studies. In this study, an advanced continuum modeling including material non-linearity in large strain deformations, hardening/softening soil behavior and soil-pipeline interaction is applied. Through the application of a fully nonlinear analysis based on an explicit finite difference method, the mechanics of the pipeline behavior and its interaction with soil under large strains is presented in more detail. To make the results useful in oil and gas engineering works, a continuous pipeline of two steel grades buried in two clayey soil types with four different crossing angles of 30°, 45°, 70° and 90° with respect to the pipeline axis have been considered. The results are presented as the fault movement corresponding to different damage limit states. It was seen that the maximum affected pipeline length is about 20 meters for the studied conditions. Also, the affected length around the fault cutting plane is asymmetric with about 35% and 65% at the fault moving and stationary block, respectively. Local buckling is the dominant damage state for greater crossing angle of 90° with the fault displacement varying from 0.4 m to 0.55 m. While the tensile strain limit is the main damage state at the crossing angles of 70° and 45°, the cross-sectional flattening limit becomes the main damage state at the smaller 30° crossing angles. Compared to the stiff clayey soil, the fault movement resulting 3% tensile strain limit reach up to 40% in soft clayey soil. Also, it was seen that the effect of the pipeline internal pressure reaches up to about 40% compared to non-pressurized condition for some cases.