Transactions of the Korean Society of Mechanical Engineers A
/
v.28
no.9
/
pp.1399-1407
/
2004
Structural optimization has been carried out in continuous design space or in discrete design space. Generally, available designs are discrete in design practice. However, the methods for discrete variables are extremely expensive in computational cost. An iterative optimization algorithm is proposed for design in a discrete space, which is called a sequential algorithm using orthogonal arrays (SOA). We demonstrate verifying the fact that a local optimum solution can be obtained from the process with this algorithm. The local optimum solution is defined in a discrete design space. Then the search space, which is a set of candidate values of each design variables formed by the neighborhood of a current design point, is defined. It is verified that a local optimum solution can be found by sequentially moving the search space. The SOA algorithm has been applied to problems such as truss type structures. Then it is confirmed that a local solution can be obtained by using the SOA algorithm
The structural optimization has been carried out in the continuous design space or in the discrete design space. Generally, available designs are discrete in design practice. But methods for discrete variables are extremely expensive in computational cost. In order to overcome this weakness, an iterative optimization algorithm was proposed for design in the discrete space, which is called as a sequential algorithm using orthogonal arrays (SOA). We focus to verify the fact that the local solution can be obtained throughout the optimization with this algorithm. The local solution is defined in discrete design space. Then the search space, which is the set of candidate values of each design variables formed by the neighborhood of current design point, is defined. It is verified that a local solution can be founded by moving sequentially the search space. The SOA algorithm has been applied to problems such as truss type structures. Then it is confirmed that a local solution can be obtained using the SOA algorithm
International Journal of Fuzzy Logic and Intelligent Systems
/
v.16
no.4
/
pp.270-275
/
2016
We present an approach for acceleration actor-critic algorithm for reinforcement learning with continuous action space. Actor-critic algorithm has already proved its robustness to the infinitely large action spaces in various high dimensional environments. Despite that success, the main problem of the actor-critic algorithm remains the same-speed of convergence to the optimal policy. In high dimensional state and action space, a searching for the correct action in each state takes enormously long time. Therefore, in this paper we suggest a search accelerating function that allows to leverage speed of algorithm convergence and reach optimal policy faster. In our method, we assume that actions may have their own distribution of preference, that independent on the state. Since in the beginning of learning agent act randomly in the environment, it would be more efficient if actions were taken according to the some heuristic function. We demonstrate that heuristically-accelerated actor-critic algorithm learns optimal policy faster, using Educational Process Mining dataset with records of students' course learning process and their grades.
Spatio-temporal join operators are essential to the management of spatio-temporal data such as moving objects. For example, the join operators are parts of processing to analyze movement of objects and search similar patterns of moving objects. Various studies on spatio-temporal join queries in outdoor space have been done. Recently with advance of indoor positioning techniques, location based services are required in indoor space as well as outdoor space. Nevertheless there is no one about processing of spatio-temporal join query in indoor space. In this paper, we introduce continuous spatio-temporal self-join queries in indoor space and propose a method of processing of the join queries over stream data of moving objects. The continuous spatio-temporal self-join query is to update the joined result set satisfying spatio-temporal predicates continuously. We assume that positions of moving objects are represented by symbols such as a room or corridor. This paper proposes a data structure, called Candidate Pairs Buffer, to filter and maintain massive stream data efficiently and we also investigate performance of proposed method in experimental study.
Transactions of the Korean Society of Mechanical Engineers A
/
v.24
no.5
s.176
/
pp.1193-1202
/
2000
The paper describes the use of genetic algorithms (GA's) to the minimum weight design of stiffened composite panels for buckling constraints. The proposed design problem is characterized by mixture of continuous and discrete design variables corresponding to panel elements and stacking sequence of laminates, respectively. Design space is multimodal and non-convex, thereby introducing the need for global search strategies. Advanced strategies in GA's such as directed crossover, multistage search and separated crossover are adopted to improve search ability and to save computational resource requirements. The paper explores the effectiveness of genetic algorithms and their advanced strategies in designing stiffened composite panels under various uniaxial compressive load conditions and the linrlit on stacking sequence of laminates.
The differential evolution algorithm is one of the meta-heuristic techniques developed to solve the real optimization problem, which is a continuous problem space. In this study, in order to use the differential evolution algorithm to solve the traveling salesman problem, which is a discontinuous problem space, a random key representation method is applied to the differential evolution algorithm. The differential evolution algorithm searches for a real space and uses the order of the indexes of the solutions sorted in ascending order as the order of city visits to find the fitness. As a result of experimentation by applying it to the benchmark traveling salesman problems which are provided in TSPLIB, it was confirmed that the proposed differential evolution algorithm based on the random key representation method has the potential to solve the traveling salesman problems.
연속 매체, 특히 비디오 데이타에 대한 일반 사용자 연산에는 재생뿐만 아니라 임의 속도 탐색 연산, 정지 연산, 그리고 그 외 다양한 연산이 있다. 이 연산 중에서 원하는 화면을 빨리 찾는 데에 유용한 고속 전진(FF: fast-forward)과 고속 후진(FB: fast-backward)은 재생 연산과는 달리 비순차적인 디스크 접근을 요구한다. 이러한 경우에 디스크 부하가 균등하지 않으면 일부 디스크에 접근이 편중되어 서비스 품질이 떨어진다. 본 논문에서는 디스크 배열을 이용한 저장 시스템에서 디스크 접근을 고르게 분산시키기 위하여 '소수 라운드 로빈(PRR: Prime Round Robin)' 방식으로 연속 매체를 디스크에 배치하는 기법에서 문제가 됐던 낭비된 디스크 저장 공간을 신뢰도 향상을 위해서 사용하는 '그룹화된 패리티를 갖는 소수 라운드 로빈(PRRgp: PRR with Grouped Parities)' 방식을 제안한다. 이 기법은 PRR 기법처럼 임의 속도 검색 연산에 있어서 디스크 배열을 구성하는 모든 디스크의 부하를 균등하게 할뿐만 아니라 낭비됐던 디스크 저장 공간에 신뢰도를 높이기 위한 패리티 정보를 저장함으로서 신뢰도를 향상시킬 수 있다. 신뢰도 모델링 방법으로 조합 모델과 마르코프 모델을 이용해서 결함발생율과 결함복구율을 고려한 신뢰도를 산출하고 비교.분석한다. PRR 기법으로 연속 매체를 저장하고 낭비되는 공간에 패리티 정보를 저장할 경우에 동시에 두 개 이상의 결함 발생 시에 그 결함으로부터 복구가 불가능하지만 PRRgp 기법에서는 약 30% 이상의경우에 대해서 동시에 두 개의 결함 발생 시에 저장한 패리티 정보를 이용한 복구가 가능할 뿐만 아니라 패리티 그룹의 수가 두 개 이상인 경우에는 두 개 이상의 결함에 대해서도 복구가 가능하다.Abstract End-user operations on continuous media (say video data) consist of arbitrary-rate search, pause, and others as well as normal-rate play. FF(fast-forward) / FB(fast-backward) among those operations are desirable to find out the scene of interest but they require non-sequential access of disks. When accesses are clustered to several disks without considering load balance, high quality services in playback may not be available. In this paper, we propose a new disk placement scheme, called PRRgp(Prime Round Robin with Grouped Parities), with enhanced reliability by using the wasted disk storage space in an old one(PRR: Prime Round Robin), in which continuous media are placed on a disk array based storage systems to distribute disk accesses uniformly. The PRRgp can not only achieve load balance of disks consisting of a disk array under arbitrary-rate search like PRR, but also improve reliability by storing parity information on the wasted disk space appropriately. We use combinatorial and Markov models to evaluate the reliability for a disk array and to analyze the results. When continuous media like PRR are placed and parity information on the wasted disk space is stored, we cannot tolerate more than two simultaneous faults. But they can be recovered by using stored parity information for about 30 percent as a whole in case of PRRgp presented in this paper. In addition, more than two faults can be tolerated in case there are more than two parity groups.
It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. Toidentifythelocation and depth of a crack in a structure, a method is presented in this paper which uses neuro-fuzzy-evolutionary technique, that is, Adaptive-Network-based Fuzzy Inference System (ANFIS) solved via hybrid learning algorithm (the back-propagation gradient descent and the least-squares method) and Continuous Evolutionary Algorithms (CEAs) solving sir ale objective optimization problems with a continuous function and continuous search space efficiently are unified. With this ANFIS and CEAs, it is possible to formulate the inverse problem. ANFIS is used to obtain the input(the location and depth of a crack) - output(the structural Eigenfrequencies) relation of the structural system. CEAs are used to identify the crack location and depth by minimizing the difference from the measured frequencies. We have tried this new idea on beam structures and the results are promising.
The pronunciation lexicon of a continuous speech recognition system should contain enough pronunciation variations to be used for building a search space large enough to contain a correct path, whereas the size of the pronunciation lexicon needs to be constrained for effective decoding and lower perplexities. This paper describes a procedure for selecting pronunciation variations to be included in the lexicon based on the frequencies of the corresponding phonetic rules observed in the training corpus. Likelihood of a phonetic rule's application is estimated using the observation frequency of the rule and is used to control the construction of a pronunciation lexicon. Experiments with various pronunciation lexica show that the proposed method is helpful to improve the speech recognition performance.
The continuous data such as video streams and voice analog signals can be modeled as multidimensional data sequences(MDS's) in the feature space, In this paper, we investigate the clustering technique for multidimensional data sequence, Each sequence is represented by a small number by hyper rectangular clusters for subsequent storage and similarity search processing. We present a linear clustering algorithm that guarantees a predefined level of clustering quality and show its effectiveness via experiments on various video data sets.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.