Original Article

International Journal of Fuzzy Logic and Intelligent Systems

ISSN(Print) 1598-2645
ISSN(Online) 2093-744X

Vol. 16, No. 4, December 2016, pp. 270
http://dx.doi.org/10.5391/IJF1S.2016.16.4.270

Actor-Critic Algorithm with Transition Cost
Estimation

Denisov Sergey and Jee-Hyong Lee
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea

1S

Abstract

We present an approach for acceleration actor-critic algorithm for reinforcement learning
with continuous action space. Actor-critic algorithm has already proved its robustness to the
infinitely large action spaces in various high dimensional environments. Despite that success,
the main problem of the actor-critic algorithm remains the same-speed of convergence to
the optimal policy. In high dimensional state and action space, a searching for the correct
action in each state takes enormously long time. Therefore, in this paper we suggest a
search accelerating function that allows to leverage speed of algorithm convergence and reach
optimal policy faster. In our method, we assume that actions may have their own distribution
of preference, that independent on the state. Since in the beginning of learning agent act
randomly in the environment, it would be more efficient if actions were taken according to the
some heuristic function. We demonstrate that heuristically-accelerated actor-critic algorithm
learns optimal policy faster, using Educational Process Mining dataset with records of students’
course learning process and their grades.

Keywords: Actor-critic algorithm, Reinforcement learning, Continuous action space,
Heuristic function

Received: Nov. 28, 2016
Revised : Dec. 12,2016
Accepted: Dec. 13, 2016

Correspondence to: Jee-Hyong Lee
(John@skku.edu)
©The Korean Institute of Intelligent Systems

C€OThis is an Open Access article dis-
tributed under the terms of the Creative
Commons Attribution Non-Commercial Li-
cense (http://creativecommons.org/licenses/
by-nc/3.0/) which permits unrestricted non-
commercial use, distribution, and reproduc-
tion in any medium, provided the original

work is properly cited.

1. Introduction

Q-Learning is the task-solving method that explores task environment and receives the feed-
back in form of rewards. It is simple and in the same time powerful approach for problems
where we need to establish sequence of actions that leads to the optimal goal. Structure of
the basic reinforcement learning process you can see on Figure 1. After initial version of
reinforcement learning equation appeared [1]], there were proposed a lot of extensions that
increase its performance. One of the latest presented methods was Deep Q Network (DQN) [2]
(or Neural Q-Fitting algorithm [NFQ]) method that outperformed the human in arcade game
environments [3]]. The great success of this approach is driven by robustness of the algorithm
to the high dimensional spaces. Instead of estimation q-value for each state as it was done
before, it approximates g-values through neural network. However, it still has some limitations
like a lack of stability during convergence of network or inability to be used in environments
with high or continuous action space [4}, 5]]. Consequently, there was an improvement of the
DQON that allows the methods to be efficient in high dimensional state and action spaces as
well as in low dimensional spaces. The main idea is the dividing DQN into two parts; actor
part, that chooses actions in environment, and critic part, that evaluates how appropriate was
that action at the current state [|6]. This significant progress helps to solve complex problems

| 270

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

International Journal of Fuzzy Logic and Intelligent Systems, vol. 16, no. 4, December 2016

State: s

Action: a
Reward:r

Environment

Figure 1. Reinforcement learning structure.

that require obtaining policy in continuous action space. How-
ever, to search the optimal policy it has to be trained over long
time, since it maximizes action-value function iteratively at

every step in infinite space of possible actions.

In this work we consider the heuristic function, which allows
to speed up the training of actor-critic algorithm [6]. This func-
tion represents the initial action preference distribution, which
is independent on state space. Using transition history, we are
able to approximate the rewards that were obtained before as
a result of some actions set. Knowing this approximation, we
can state that some actions have higher probability to lead us
to the optimal goal, so it’s better to observe the environment in
that direction. In case, when g-values just initialized, we can
explore environment using action transition costs that give us

hints which state is worth to observe during next step.

In order to evaluate our method we applied modified actor-
critic algorithm to the educational process mining dataset. This
dataset consist of 115 students’ records of course taken during
one semester. It contains the set of sequences, where the name
of course activity done is stated and time required for its com-
pleteness is recorded. We use activities that took more than 5
minutes only, to get rid of unnecessary noise. Result of exper-
iments shows that modified actor-critic algorithm converged
faster compare to the initial version.

In the next section we will discuss related work and earlier
researches. After that, we will describe our heuristic accelera-
tion to the existing methods and in Section 4, we will observe
the method evaluation and results of experiment. In the last
section, we will discuss results and make conclusion over all
work that was done.

2. Related Work

271 | Denisov Sergey and Jee-Hyong Lee

2.1 Original Q-Learning Algorithm

The original g-learning paper described the algorithm using the

g-learning function (T).

Qn(s,a)=(1—0a)Qn-1(s, a)
+ a[rn"’PymaXanl (87(1)]. (1)

Here we have @, (s, a) as a g-value of n-th state s, after action
a. « is the learning rate and -y is the discount factor for the
previous state g-value. 7, is the reward we can obtain at current
that state. This equation describes an agent movement in some
environment with evaluation of every step. First, agent observes
its current state, after that it selects and performs an action and
then observes the subsequent state. After doing an action, agent
received immediate feedback in terms of reward and adjusts
its g-value using a learning factor [1]]. This equation has a
lot of extensions like a SARSA algorithm [7] that is being
used for DQN often. However, it is not possible to observe
high dimension environment with those algorithms, because
computation of g-value for each state would take huge amount
of time.

2.2 DQN Algorithm

Therefore, there were researches how to apply neural networks
to approximate the g-value function to be able to learn policies
from high dimensional state spaces. The DQN algorithm has a
structure of neural network that takes a state and action pair as
an input and shows the approximated g-value as follows:
r+ymaxQ(s’,a’), & # final,

T, s’ = final.

state action

Figure 2. Structure of the DQN.

On Figure 2 we can see the neural network structure that
approximates state, action pair to the reward r added to the
discounted maximum next q-value in case if state is not final [g].

http://dx.doi.org/10.5391/IJF1S.2016.16.4.270

Update actor network

e

e
actor ‘
N
% :
—— sote @@ octin)
\\ . "
Environment § |
I|
critic \ /
\.
L e @ @@ vae
N\ rd
@

Figure 3. Structure of actor-critic algorithm.

And if state is final, we just approximate it to the reward we
can get on that state. DQN algorithms moved reinforcement
learning research toward to the new level, where computers
started to be competitive to the human in the fields, nobody

could ever think computer would success [9].

2.3 Actor-Critic Algorithm

Recently, during this year, there were a lot of researches re-
lated to g-learning in continuous action space that suggested
a solution to the problem g-learning had before [10]. Actor-
critic algorithm, that uses policy gradient for updating actor
parameters, become well-known during short time, due to its
robustness to the variated sort of tasks. The structure of the
actor-critic algorithm is showed on Figure 3.

The idea of actor-critic algorithm is simple. We have an agent
network that acts in environment and we have critic network that
gives a grade for every action [[11]]. We update critic network
like every other network, using mean square error as a loss
function. However, in case of actor network, we use the policy
gradient, that leads us to the higher g-value with each update.
Actor-critic algorithm deals well with the problems that DQN
could not deal with. However the main problem of actor-critic
algorithm is its speed of convergence.

In the next section, we will describe how we modified that

algorithm to accelerate the searching speed.

3. Heuristic Acceleration Function

www.ijfis.org

3.1 Motivation

For increasing the speed of algorithm convergence, we imple-
mented heuristic acceleration function. Using neural network,
it approximates the award of every action independently on
states. New exploration strategy helps to find out the optimal
policy from transition history faster than if we would do it
randomly. There were studies [12]] related to the introducing
heuristic function for multiagent reinforcement learning [|13]],
however, it was able to perform only in deterministic action
space. Combining heuristic function and actor-critic algorithm
should lead to increasing the speed of algorithm convergence,
in case when the optimal policy should be established from the

set of previous interactions.

3.2 Implementation

The best solution for function approximation is the using the
neural network. For our purposes, we defined neural network
with action for input and average reward for this action over
one episode as an output. The mean squared error function or

just loss function for our method looks like as it is shown on

Eq. (2.
1 N
L=+ ;@ —avg(r(a | 0)))?, 2)

where N is the length of the dataset, y; is the target value and
r(a | 0) is the average reward for action a of some student
approximated by network parameters 6.

However, increasing g-value with every action may lead to
losing the update stability of the critic network, because target
value would grow with every iteration and network won’t be
able to converge. Therefore, we implemented the transition
cost as a heuristic acceleration, to make the target of q-value
decrease with each step.

Moreover, the last thing we want to do is to make algorithm
to do not converge at all. Following this, transition costs should
be small to do not impact on the training later, when the optimal
policy will be already near to be obtained. To deal with that
problem, we normalized our reward, and final version looks
like it stated on Eq. ().

R(a |6
e e (<a1 Lt ?GN) -1 3
Here we normalize our received reward R(a | 0) using the max-
imum reward of the whole set of actions. Then we subtracting

Actor-Critic Algorithm with Transition Cost Estimation | 272

International Journal of Fuzzy Logic and Intelligent Systems, vol. 16, no. 4, December 2016

one, to receive a transition cost. In case if our network will
predict the reward for some action bigger than the maximum
reward from set of experienced actions, that we have in our
transaction history, it will mean that it found better direction.
Then we will have a positive feedback for that action. Oppo-
sitely, if we will have the smallest predicted value, our cost for
this action will be the largest one.

We used the version of algorithm, stated in the work of
Lillicrap et al. [|6]. He proposed to use target networks to actor
and critic networks to increase the stability of updating. He
also used experience replay technique (replay buffer), random
process (Ornstein-Uhlenbeck process, Eq. (@) for action space

exploration and minibatch training mode.

d:l?i = 9(,[1, — SL’Z‘)dt + O'dWZ (4)

3.3 Complete Algorithm

With our heuristic accelerated function the complete actor-critic
algorithm will look like on Figure 4.

This algorithm was adapted from ‘Continuous Control Deep
Reinforcement Learning’ article written by Lillicrap et al. [6].
We calculate the transition cost in the moment before updating
critic network to receive modified g-value.

In the next section, we will discuss details of the experiment
and observed obtained results.

4. Experiment

4.1 Dataset

To test our approach, we decided to extract optimal policy from
Educational Process Mining dataset. This dataset contains a
one semester information about students. In records you can
find the activity and its duration that student was doing during
the course. We did not include activities that were shorter than
5 minutes, because we did not want noisy data to imply our
experiment. As a reward we used the grades of the students in
the end of semester. State was represented by the overall time
of each activity student has done until current moment. Action
was defined by the option how long and which activity to do
the next.

4.2 Settings

For noise function (Ornstein-Uhlenbeck process) we chose
uw=0,0 = 0.15, and ¢ = 0.2 [6]. Our proposed neural

273 | Denisov Sergey and Jee-Hyong Lee

Randomly initialize critic network Q(s,a | #9) and actor
p(s | %) with weights 69 and Q*
Initialize target network @’ and ;/ with weights #9" < 69,
or' < or
Initialize replay buffer R
for episode= 1, M do
Initialize a random process N for action exploration
Receive initial observation state s;
fort =1,T do
Select action a; = p(s; | O*) + N, according to the
current policy and exploration noise
Execute transition (s;, at, 1, S¢4+1) in R
Sample a random minibatch of IV transitions
(Si, i, Ty, Si+1) from R
R(a|0)
max,(ay - an)
Set target of critic network:

Calculate r; =

yi =i +7Q (siy1, 1 (siy1 | 0") | 0%)

Update critic by minimizing the loss:

LN
L= N ;(yi — Q(si,a; | 69))?

Update the actor policy using the sampled policy gra-
dient:

N
1
VouJ :N Z (VaQ(Saa | GQ) |s:si,a:p,(si)

i=1
xVupa(s | 0) |.,)
Update the target networks:
09 «— 709 + (1 — 7)Y
0" 10" + (1 — 7)o"
end for
end for

Figure 4. Complete actor-critic algorithm with heuristic acceleration.

network was trained on 1,645 examples of actions with 15 di-
mensions having continuous values from 0 to 1. We also created
simulation network that was imitating the environment trained
on the original history transitions set. Actor-Critic network
was trained over 130,000 iterations and it predicted 10,000
sequences in total.

For evaluation of both algorithms we trained simulation neu-
ral network that approximates the student states and his grade.
Therefore, when we will receive some new state we can pre-
dict its grade or, in another words, evaluate it using our reward

simulation neural network.

http://dx.doi.org/10.5391/IJF1S.2016.16.4.270

Q-Value

Actor-Critic

Figure 5. Results of experiment.

4.3 Results

On Figure 5 we can see the graph of comparison g-values
between two simulated policies extracted from dataset. Red
line that characterize our modified algorithm shows the increase
of policy right after start of training. However, blue line is not
following red line, what means we achieved our purpose of
accelerating the basic algorithm. After 3,000th episode curves
became closer to each other, however after 2,000 iterations
difference is increasing again. After 7,000th episode both lines
started to slow down increasing and be more stable. It means
that algorithm has obtained the optimal policy.

Q-value itself is also higher from the policy of modified actor-
critic algorithm. It is starting to be higher from the beginning,
because it is already initially accelerated by heuristic function,
when for original algorithm transition reward was all the time
equal to zero. If we will compare the points on the given graph
with the same g-values for both networks, we will see that under
g-value 150, proposed method converged to the same g-value
almost twice faster than original algorithm. It is proves the
advantage of using heuristic algorithm.

Overall results shows, that performance of modified actor-
critic algorithm increased and it obtained the optimal policy

faster than its previous version, what means we achieved our

purpose.

5. Conclusion

In this paper we proposed the heuristic acceleration function
for actor-critic algorithm. This function is approximated thor-
ough neural network and used during the calculation of the
target value of the critic network. Introduced method has an
assumption that every action may have its own distribution of

www.ijfis.org

preference that does not depend on state and can be found be
looking through the transition history rewards. After obtaining
reward for each action, we train neural network to be able to
establish rewards for new actions suggested by actor. Because
action rewards will give the initial direction to the optimal goal,
actor-critic is able to converge faster than before implementa-
tion of our method.

In further research, we are planning to test our proposed
method in the more environments. We will test it in fields with
higher action and state spaces and observe the behavior of the

policy during training.

Conflict of Interest

No potential conflict of interest relevant to this article was
reported.

Acknowledgements

This research was supported by Next-Generation Information
Computing Development Program through the National Re-
search Foundation of Korea (NRF) funded by the Ministry of
Science, ICT & Future Planning (NRF-2014M3C4A7030503).
Also, this research is supported by Ministry of Culture, Sports
and Tourism (MCST) and Korea Creative Content Agency
(KOCCA) in the Culture Technology (CT) Research & De-
velopment Program 2016.

References

[1] C.J.C. H. Watkins and P. Dayan, “Q-learning,” Machine
Learning, vol. 8, no. 3, pp. 279-292, 1992. http://dx.doi.
org/10.1023/A:1022676722315

Actor-Critic Algorithm with Transition Cost Estimation | 274

http://dx.doi.org/10.1023/A:1022676722315
http://dx.doi.org/10.1023/A:1022676722315

International Journal of Fuzzy Logic and Intelligent Systems, vol. 16, no. 4, December 2016

(2]

(3]

[10]

D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch
mode reinforcement learning,” Journal of Machine Learn-
ing Research, vol. 6, pp. 503-556, 2005.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, L
Antonoglou, D. Wierstra, and M. Riedmiller, “Playing
Atari with deep reinforcement learning,” Available https:
/larxiv.org/abs/1312.5602

Y. Tkachenko, “Autonomous CRM control via CLV ap-
proximation with deep reinforcement learning in discrete
and continuous action space,” Available https://arxiv.org/
abs/1504.01840

M. Riedmiller, “Neural fitted Q iteration: first experiences

with a data efficient neural reinforcement learning method,”
in Machine learning: ECML 2005, J. Gama, R. Camacho,
P. B. Brazdil, A. M. Jorge, and L. Torgo, Eds. Berlin:
Springer Berlin Heidelberg, 2005, pp. 317-328. http://dx

doi.org/10.1007/11564096_32

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous control
with deep reinforcement learning,” Available https://arxiv,
org/abs/1509.02971

R. Sutton, “Generalization in reinforcement learning: suc-
cessful examples using sparse coarse coding,” Advances in
Neural Information Processing Systems, vol. 8, pp. 1038-
1044, 1996.

H. van Hasselt, A. Guez, and D. Silver, “Deep rein-
forcement learning with double Q-learning,” Available
https://arxiv.org/abs/1509.0646 1

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, et al, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540,
pp- 529-533, 2015. jhttp://dx.doi.org/10.1038/nature 14236

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and
M. Riedmiller, “Deterministic policy gradient algorithms,”

275 | Denisov Sergey and Jee-Hyong Lee

in Proceedings of the 31st International Conference on
Machine Learning (ICML-14), Beijing, China, 2014, pp.
387-395.

[11] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour,
“Policy gradient methods for reinforcement learning with
function approximation,” Advances in Neural Information
Processing Systems 12, vol. 99, pp. 1057-1063, 2000.

[12] L. A. Celiberto, C. H. C. Ribeiro, A. H. R. Costa, and R.
A. C. Bianchi, “Heuristic reinforcement learning applied
to robocup simulation agents,” in RoboCup 2007: Robot
Soccer World Cup XI, U. Visser, F. Ribeiro, T. Ohashi,
and F. Dellaert, Eds. Berlin: Springer Berlin Heidelberg,
2008, pp 220-227. http://dx.doi.org/10.1007/978-3-540-
68847-1_19

[13] R. A. C. Bianchi, M. E. Martins, C. H. C. Ribeiro, and A.
H. R. Costa, “Heuristically-accelerated multiagent rein-
forcement learning,” IEEE Transactions on Cybernetics,
vol. 44, no. 2, pp. 252-265, 2014. http://dx.doi.org/10.
1109/TCYB.2013.2253094

Denisov Sergey s an M.S. candidate at De-
partment of Computer Science, Sungkyunkwan
University, Korea. He majored in Computer

Engineering in his bachelor study. He has

been working on research related to machine
learning and reinforcement learning.

E-mail: denisovser@naver.com

Jee-Hyong Lee is a professor at Sungkyun-
kwan University. He has been working on
research related to fuzzy theory and applica-
tion intelligent system. He published more

than 100 publications in peer-reviewed jour-
nals or conferences, and books on intelligent systems, data
mining, and machine learning.

E-mail: john@skku.edu

https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1504.01840
https://arxiv.org/abs/1504.01840
http://dx.doi.org/10.1007/11564096_32
http://dx.doi.org/10.1007/11564096_32
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.06461
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1007/978-3-540-68847-1_19
http://dx.doi.org/10.1007/978-3-540-68847-1_19
http://dx.doi.org/10.1109/TCYB.2013.2253094
http://dx.doi.org/10.1109/TCYB.2013.2253094

