• Title/Summary/Keyword: continuous monitoring

Search Result 1,564, Processing Time 0.028 seconds

A Technical Trend on UHF Techniques for On-Line PD Monitoring and Site Testing for Transformer (전력용 변압기의 온라인 PD 모니터링과 시험을 위한 UHF 기술 동향)

  • Kim, Byung-Woo;Kim, Yun-Seok;Kim, Chang-Bok;Cho, Soo-Young;Choi, Young-Il;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1972-1973
    • /
    • 2007
  • A field-oriented UHF system for on-line PD monitoring of transformers is designed, which has been installed inside the oil tank of a transformer. This system has successfully captured long intermittent discharge signals that hadn't been detected through conventional techniques, and solved the problem successfully. The results demonstrate that UHF technique has great advantages for on-line PD monitoring of transformers. By adopting the peak detection technique, it becomes easy and effective for the transplantation of the phase-resolved pattern recognition technique from conventional method to UHF method, and then to realize continuous on-line monitoring, source characterization and trending analysis.

  • PDF

Development of an Ambulatory Wearable System for Continuous Patient Monitoring (휴대용 심전도 모니터링 계측 시스템 개발에 관한 연구)

  • Park, Chan-Won;Jeon, Chan-Min
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.920-923
    • /
    • 2003
  • An wearable electrocardiogram (ECG) monitoring system is a widely used non-invasive diagnostic tool for ambulatory patient who may be at risk from latent life-threatening cardiac abnormalities. In this paper, we have a portable ECG monitoring system with conductive fiber which was characterized by the small-size and the low power consumption. The system consists of conductive fibers, one-chip microcontroller, ECG preprocessing circuit, and monitoring software to be able to record and analyze in PC. ECG preprocessing circuit is made of pre-amplifier with gain of 10, band-pass filter with bandwidth of 0.5-120Hz and 2.5V offset circuit for A/D conversion. ECG signals obtained by sensor are included with corrupted noises such as a baseline wandering, 60 Hz power noise and interference noise by body movement. For cancellation corrupted noises in signals obtained by conductive fiber, we used the wavelet decomposition of wavelet transforms in MATLAB toolbox.

  • PDF

Monitoring Gene Therapy by Radionuclide Approaches (핵의학적 기법을 이용한 유전자 치료 영상법)

  • Min, Jung-Joon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.2
    • /
    • pp.96-105
    • /
    • 2006
  • Molecular imaging has its root in nuclear medicine and gene therapy monitoring. Therefore, recent progress in the development of non-invasive imaging technologies, particularly nuclear medicine, should allow molecular imaging to play a major role in the field of gene therapy. These tools have recently been validated in gene therapy models for continuous quantitative monitoring of the location, magnitude, and time-variation of gene delivery and/or expression. This article reviews the use of radionuclide imaging technologies as they have been used in imaging gene delivery and gene expression for gene therapy applications. The studios published to date lend support that noninvasive imaging tools will help to accelerate pre-clinical model validation as well as allow for clinical monitoring of human gene therapy.

Development of knowledge based expert system for fault diag industrial rotating machinery (산업용 회전 기기의 현장 이상 진단을 위한 지식 기반 전문가 시스템 개발)

  • 이태욱;이용복;김승종;김창호;임윤철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.633-639
    • /
    • 2001
  • This paper proposes a knowledge-based expert system. which is assembled into hardware organized with sensor module. AID converter, USB. data acquisition PC and software composed of monitoring and diagnosis module combined with a frame-based method using Sohre's chart and a rule-based method. Vibration signals using various sensors are acquired by AID converter. transferred into PC and processed to obtain a continuous monitoring of the machine status displayed into several plots. Through combining frame-base which covers wide vibration causes with rule-base which gives relatively specified diagnosis results, high accuracy of fault diagnosis can be guaranteed and knowledge base can be easily extended by adding new causes or symptoms. Some examples using experimental data show the good feasibility of the proposed algorithm for condition monitoring and diagnosis of industrial rotating machinery.

  • PDF

Development of a Modular Clothing System for User-Centered Heart Rate Monitoring based on NFC (NFC 기반 사용자 중심의 모듈형 심박측정 의류 시스템 개발)

  • Cho, Hakyung;Cho, SangWoo;Cho, Kwang Nyun
    • Science of Emotion and Sensibility
    • /
    • v.23 no.2
    • /
    • pp.51-60
    • /
    • 2020
  • This study aimed to develop a modular smart clothing system for heart rate monitoring that reduces the inconvenience caused by battery charging and the large size of measurement devices. The heart rate monitoring system was modularized into a temporary device and a continuous device to enable heart rate monitoring depending on the requirement. The temporary device with near-field communication (NFC) and heart rate sensors was developed as a clothing attachment type that enables heart rate monitoring via smart phone tagging when required. The continuous device is based on Bluetooth Low Energy (BLE) communication and batteries and was developed to enable continuous heart rate measurement via a direct connection to the temporary device. Furthermore, the temporary device was configured to connect with a textile electrode made of a silver-based knitted fabric designed to be located below the pectoralis major muscle for heart rate measurement. Considering the user-experience factors, key functions, and the ease of use, we developed an application to automatically log through smart phone tagging to improve usability. To evaluate the accuracy of the heart rate measurement, we recorded the heart rate of 10 healthy male subjects with a modular smart clothing system and compared the results with the heart rate values measured by the Polar RS800. Consequently, the average heart rate value measured by the temporary system was 85.37, while that measured by the reference device was 87.03, corresponding to an accuracy of 96.73%. No significant difference was found in comparison with the reference device (T value = -1.892, p = .091). Similarly, the average heart rate measured by the continuous system was 86.00, while that measured by the reference device was 86.97, corresponding to an accuracy of 97.16%. No significant difference was found in terms of the heart rate value between the two signals (T value = 1.089, p = .304). The significance of this study is to develop and validate a modular clothing system that can measure heart rates according to the purpose of the user. The developed modular smart clothing system for heart rate monitoring enables dual product planning by reducing the price increase due to unnecessary functions.

The Study of continuous cardiac output measurement module development of the cardiopulmonary function patient of using the Swan-Ganz Catheter (Swan-Ganz 카테터를 이용한 심폐기능 이상 환자의 지속적 심박출량 측정 모듈 개발)

  • Lim, Byeong-Seon;Han, Seung-Hwan;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.959-964
    • /
    • 2013
  • This study materialized the new module which enables to measure more precise data than the existing modules in order to examine the cardiac disorder critical patient's state by using Swan-Ganz Catheter. There was bolus type CO(Cardiac Output) module which measured CO by measuring the blood changes in temperature and recovery time by injecting cold sap into the heart in the past, but recently, it is not used in most of hospitals due to limit of difficulty of continuous monitoring for the patients. To overcome this limit, the continuous cardiac output measurement platform was materialized to enable the continuous monitoring for patients. The wasted cost issues because of introducing the expensive imported equipment to observe the critical patient`s state with abnormal cardiopulmonary function in the hospitals can be solved by using this new module, and the problem of existing modules should be supplemented for more accurate diagnosis by collecting more precise data.

A Study on the Effectiveness of Continuous CO2 Emission Monitoring in a Waste Incinerator (폐기물 소각시설의 이산화탄소 (CO2) 연속측정 실효성에 관한 연구)

  • Oh, Seung Hwan;Kang, Lim Suk;Jung, Dong Hee
    • Journal of Climate Change Research
    • /
    • v.9 no.3
    • /
    • pp.273-281
    • /
    • 2018
  • The purpose of this study is to consider the effectiveness of continuous $CO_2$ emission monitoring in waste incinerator. To prevent global warming, many countries are trying to reduce $CO_2$, the main greenhouse gas. Currently, Korea is implementing an emission trading scheme to reduce $CO_2$, and waste incinerators are included in this scheme as major $CO_2$ sources. However, when using waste incinerators, $CO_2$ is discharged during incineration of various types of wastes, therefore it is very difficult to calculate the amount of emissions according to IPCC guidelines. In addition, the estimation of $CO_2$ emissions by calculation is known to lack of accuracy comparing with actual emissions. Currently, Korea is operating CleanSYS, which enables continuous measurement of gases emitted into the atmosphere. Therefore, it is possible to estimate the $CO_2$ emissions of waste incineration facilities. The IPCC, which published $CO_2$ emission calculation guidelines, recognizes that direct measurement of emission is a more advanced method in cases of various $CO_2$ emission sources such as a waste incineration facility. Also, Korean emission trading scheme guidelines allow estimation of $CO_2$ emissions by continuous measurement at waste incineration facilities. Therefore, this study considers the effectiveness of a direct measurement method by comparing the results of CleanSYS with the calculation method suggested by the IPCC guidelines.

Implementation of the Chest-belt Type ECG monitoring System for Remote Health Monitoring (원격 건강 모니터링이 가능한 체스트 벨트형 심전도 측정 시스템 구현)

  • Noh, Yun-Hong;Kim, Se-Jin;Chung, Wan-Young;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.667-670
    • /
    • 2007
  • Wellness monitoring is a growing area that will benefit from the use of wearable computing systems. The purpose of this study is to implement the wearable ECG monitoring system for ubiquitous healthcare. This paper presents a prototype wearable wellness monitoring system capable of measuring, transmitting and analyzing continuous ECG data. The hardware system allows data to be transmitted wirelessly from chest belt type sensors to a server PC using Zigbee. We conducted experiments using the system for ECG monitoring and medical screening tests and present preliminary data and results.

  • PDF

Real-Time Monitoring Agent for Ubiquitous System (유비쿼터스 시스템을 위한 실시간 모니터링 에이전트)

  • Kwon, Sung-Hyun;Lee, Byoung-Hoon;Kim, Jai-Hoon;Cho, We-Duke
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.8
    • /
    • pp.803-807
    • /
    • 2008
  • The ubiquitous middleware configurated an aggregation of the various services. The services are made in different languages and the various services that are dynamically changing environment are carried out in collaboration service. The ubiquitous system that services in the these environment is required appropriate response to real-time system and reliability. In this paper, we suggest the monitoring agent that a monitoring system added or removed the services in real-time is made continuous monitoring in run-time environment and guaranteed performance and reliability of a application by maximally reducing overhead that combined with applications is occurred. The suggested scheme shows the demonstration to fit the scenario situation and verifies function and performance of monitoring about the service applications through the experiment.

A Wrist Watch-type Cardiovascular Monitoring System using Concurrent ECG and APW Measurement

  • Lee, Kwonjoon;Song, Kiseok;Roh, Taehwan;Yoo, Hoi-jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.702-712
    • /
    • 2016
  • A wrist watch type wearable cardiovascular monitoring device is proposed for continuous and convenient monitoring of the patient's cardiovascular system. For comprehensive monitoring of the patient's cardiovascular system, the concurrent electrocardiogram (ECG) and arterial pulse wave (APW) sensor front-end are fabricated in $0.18{\mu}m$ CMOS technology. The ECG sensor frontend achieves 84.6-dB CMRR and $2.3-{\mu}Vrms$-input referred noise with $30-{\mu}W$ power consumption. The APW sensor front-end achieves $3.2-V/{\Omega}$ sensitivity with accurate bio-impedance measurement lesser than 1% error, consuming only $984-{\mu}W$. The ECG and APW sensor front-end is combined with power management unit, micro controller unit (MCU), display and Bluetooth transceiver so that concurrently measured ECG and APW can be transmitted into smartphone, showing patient's cardiovascular state in real time. In order to verify operation of the cardiovascular monitoring system, cardiovascular indicator is extracted from the healthy volunteer. As a result, 5.74 m/second-pulse wave velocity (PWV), 79.1 beats/minute-heart rate (HR) and positive slope of b-d peak-accelerated arterial pulse wave (AAPW) are achieved, showing the volunteer's healthy cardiovascular state.