• Title/Summary/Keyword: continuous flow-through system

Search Result 138, Processing Time 0.028 seconds

Numerical Analysis of Plume Characteristics and Liquid Circulation in Gas Injection Through a Porous Plug

  • Choi, Choeng-Ryul;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1365-1375
    • /
    • 2000
  • Two phase flows have been numerically calculated to analyze plume characteristics and liquid circulation in gas injection through a porous plug. The Eulerian approach has been for formulation of both the continuous and dispersed phases. The turbulence in the liquid phase has been modeled using the standard $textsc{k}$-$\varepsilon$ turbulence model. The interphase friction coefficient has been calculated using correlations available in the literature. The turbulent dispersion of the phase has been modeled by the "dispersion Prand시 number". The predicted mean flows is compared well with the experimental data. The plume region area and the axial velocities are increased with the gas flow rate and with the decrease in the inlet area. The turbulent intensity also shows the same trend. Also, the space-averaged turbulent kinetic energy for various gas flow rates and inlet areas has been obtained. The results are of interest in the design and operation of a wide variety of materials and chemical processing operations.

  • PDF

Characterizing the Spatial-temporal Distribution of Soil Moisture for Sulmachun Watershed Through a Continuous Monitoring (설마천 유역의 토양수분 장기 모니터링을 통한 토양수분 시공간 변화양상의 특성화)

  • Lee, Ga Young;Kim, Ki Hoon;Kim, Sang Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.209-214
    • /
    • 2004
  • Time Domain Reflectometry with multiplex system has been installed to configure the spatial and temporal characteristics of soil moisture in a mountainous hillslope. An intensive surveying was performed to build a refined digital elevation model and flow determination algorithms with inverse surveying have been applied to establish an efficient soil monitoring system. Steady state wetness index, quasi-dynamic wetness index and fully dynamic wetness index have been calculated. Continuous monitoring of soil moisture data were analyized with wetness indices. Limitations and hydrological interpretations of this approach have beer discussed.

  • PDF

Measurement of 3D Flow inside Micro-tube Using Digital Holographic PTV Technique (디지털 Holographic PTV기법을 이용한 미세튜브 내부 3차원 유동장 측정)

  • Kim, Seok;Kim, Ju-Hee;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.177-178
    • /
    • 2006
  • Digital holographic particle tracking velocimetry (HPTV) is developed by single high-speed camera and single continuous laser with long coherent length. This system can directly capture 4000 hologram fringe images for 1 second through a camera computer memory. The 3D particle location is made of the reconstruction by using a computer hologram algorithm. This system can successfully be applied to instantaneous 3D velocity measurement in the water flow inside a micro-tube. The average of 100 instantaneous velocity vectors is obtained by reconstruction and tracking with the time of evolution of recorded fringes images. In the near future, we will apply this technique to measure 3D flow information inside various micro structures.

  • PDF

Chaotic vibration characteristics of Vertical Axis Wind Turbine (VAWT) shaft system

  • C.B. Maheswaran;R. Gopal;V.K. Chandrasekar;S. Nadaraja Pillai
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.215-220
    • /
    • 2023
  • We study the progressive full-scale wind tunnel tests on a high solidity vertical axis wind turbine (VAWT) for various tip speeds and pitch angles to understand the VAWT shaft system's dynamics using 0-1 Test for chaos. We identify that while varying rotor speed (tip speed) of the turbine, the system's dynamics change from periodic to chaotic through quasiperiodic and strange non-chaotic (SNA) states. The present study is the first experimental evidence for the existence of these states in the VAWT shaft system to the best of our knowledge. Using the asymptotic growth value Kc in 0-1 test, when the turbine operates at the low tip speeds and high pitch angles for low incoming wind speeds, the system behaves periodic (Kc ≈ 0). However, when the incoming wind speed increases further the system's dynamics shift from periodic to chaotic vibrations through quasi-periodic and SNA. This phenomenon is due to the dynamic stalling of blades which induces chaotic vibration in the VAWT shaft system. Further, the singular continuous spectrum method validates the presence of SNA and differentiates the SNA from chaotic vibrations.

Immobilization of Photobacterium Phosphoreum for Monitoring of Toxic Substances

  • Uck-Han Chun;Jun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.141-146
    • /
    • 1997
  • A new sensing system based on the immobilization of luminescent batcteria, Photobacterium phosphoreum, was proposed for continuous real-time monitoring of polluants. The response curves demonstrate that Photobacterium phosphoreum immobilized on the strontium alginate was very sensitive to seven reference chemicals used. The significant inhibitory concentrations for bioluminescence emission were 5 ppm for Pb(NO3)2, NiCl2, CdCl2, 50 ppm for NaAsO2, 0.1ppm for HgCl2, 0.5ppm for pentachlorophenol and less than 5ppm for SDS, respectively. The alginate mixed-cells (AMC) retained their luminescence during experimental period (29 days) under storage condition of -8$0^{\circ}C$. The variables affecting performance of continuous flow through monitoring (CFTM) were optimized in order to ensure stability and efficiency. The flow through cell with strontium-alginate immobilized luminescent bacteria was tested with salicylate and 4-nitrophenol and a rapid response of luminescence was recorded by time drive mode in bioluminescence spectrometer after exposure to both toxicants.

  • PDF

Evaluation of Pumping Characteristics of High Strength Concrete using Continuous Pumping System

  • Kwon, Dae-Hun;Lee, Han-Seung;Jeon, Jun-Young;Jeong, Woong-Taek;Jo, Ho-Kyoo;Kim, Hyung-Rae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.387-395
    • /
    • 2011
  • In the construction of tall-building, concrete pumping influences the success of the project. In order to establish pumping technology for high speed construction of tall building, study for quantitative evaluation of flow characteristics and pumpability should be conducted. So in this study, the characteristics including the inner pipe pressure, rheological properties of concrete and mortar through the continuous pumping test were evaluated. Then we analyzed the relations between rheological properties and pumpability. In the result of test, there are high correlations between the rheological characteristics which represented by yield stress and plastic viscosity and pressure loss with pipe length. Also, we estimated pressure loss according to conditions of concrete mix and pumping through the evaluation of inner pipe friction.

A Study on Development Framework of Lift-up and Procurement System for Effective Resource Management in the Building Construction (건설공사의 자재관리 효율화를 위한 조달 및 양중시스템 기반구축에 관한 연구)

  • Lee Hyung-Soo;Yoon You-Sang;Suh Sang-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.1 s.17
    • /
    • pp.133-139
    • /
    • 2004
  • The purpose of this study is to present an improved lift-up &procurement work flow for effective resource utilization in building construction. The current lift-up &procurement work flow has some waste factors; complicated information system, connection lack with process and decision-making delay. Therefore the study applied the value stream mapping methodology for improvement of current lift-up &procurement work flow. The main contents of the study are as follows; 1) Problems of current work flow were analyzed through current state mapping(CSM). 2) An improved work flow was suggested through future state mapping(FSM). 3) An improvement effect analysis of information system and lift-up planning was investigated. The study recommends continuous improvement of lift-up &procurement work flow and efficient management of information in building construction as a future research.

A Study on the Improving Life-up and Procurement Work Flow for Effectiveness of Resources increase in the Building Construction (건설공사의 자원 효용성 증대를 위한 조달 및 양중 작업흐름 개선에 관한 연구)

  • Lee Hyung-Soo;Yoon You-Sang;Suh Sang-Wook
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.442-445
    • /
    • 2003
  • The purpose of this study is to present an improved lift-up & procurement work flow for effectiveness of resources increase in building construction. The current lift-up & procurement work flow has some waste factors; complicated information system, connection lack with process and decision-making delay. Therefore the study applied the value stream mapping methodology for improvement of current lift-up & procurement work flow. The main contents of the study are as follows; 1) A problem of current work flow were analyzed through current state mapping(CSM). 2) An improved work flow was suggested through future state mapping(FSM). 3) An improvement effect analysis of information system and lift-up planning The study recommends that continuous improvement of lift-up & procurement work flow and efficient management of information in building construction.

  • PDF

Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction

  • Xu, Yun-ping;Zheng, Zhou-lian;Liu, Chang-jiang;Wu, Kui;Song, Wei-ju
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.355-367
    • /
    • 2018
  • This paper studies the aerodynamic stability of a tensioned, geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction. Considering flow separation, the wind field around membrane structure is simulated as the superposition of a uniform flow and a continuous vortex layer. By the potential flow theory in fluid mechanics and the thin airfoil theory in aerodynamics, aerodynamic pressure acting on membrane surface can be determined. And based on the large amplitude theory of membrane and D'Alembert's principle, interaction governing equations of wind-structure are established. Then, under the circumstance of single-mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction governing equations into a system of second-order nonlinear differential equation with constant coefficients. Through judging the frequency characteristic of the system characteristic equation, the critical velocity of divergence instability is determined. Different parameter analysis shows that the orthotropy, geometrical nonlinearity and scantling of structure is significant for preventing destructive aerodynamic instability in membrane structures. Compared to the model without considering flow separation, it's basically consistent about the divergence instability regularities in the flow separation model.

The study on the estimation of heat transfer coefficient through the counterflow concentric tube using refrigerant and moisture air (냉매와 습공기가 교차하는 2중관에서 전열계수 예측을 위한 연구)

  • 조권희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.687-694
    • /
    • 1999
  • This study was conducted to develop new drying process for automatic control and marine engi-neering system. Air-water tests were carried out to investigate dryer performance. The dispersed flow in he dryer test apparatuses was also simulated by using a numerical code which solves the Dittus-Boelter equation for continuous liquid phase and the Reynolds equation of droplet motion for continuous liquid phase and the Reynolds equation of droplet motion for dispersed phase to predict droplet removal efficiency. Proper conditions for dehumidification were optimized by response ambient conditions. When the selected indexes were constrained in the range of 85-98% moisture content above $15^{\circ}$ and more than mass flow rates of moist air 750kg/h. The numerical results were compared with the experimental data pertaining to the removal effi-ciency at chamber stage and overall pressure drop along concentric tubes Good agreement was obtained as for the efficiency while relatively poor agreement was obtained for the relative humidity. The results also showed that the efficiency depended strongly on the relative humidity at the inlet condition which indicated the importance of estimating the heat exchanger length. Effects of some design parameters in both removal efficiency and breakthrough onset condition are discussed.

  • PDF