• Title/Summary/Keyword: continuous deposition

Search Result 187, Processing Time 0.028 seconds

A Roll-to-Roll Process for Manufacturing Flexible Active-Matrix Backplanes Using Self-Aligned Imprint Lithography and Plasma Processing

  • Taussig, Carl;Jeffrey, Frank
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.808-810
    • /
    • 2005
  • Inexpensive large area arrays of thin film transistors (TFTs) on flexible substrates will enable many new display products that cannot be cost effectively manufactured by conventional means. This paper presents a new approach for low cost manufacturing of electronic devices using roll-to-roll (R2R) processes exclusively. It was developed in partnership by Hewlett Packard Laboratories and Iowa Thin Film Technologies (ITFT), a solar cell manufacturer. The approach combines ITFT's unique processes for vacuum deposition and etching of semiconductors, dielectrics and metals on continuous plastic webs with a method HP has invented for the patterning and aligning the multiple layers of a TFT with sub-micron accuracy and feature size.

  • PDF

Study on The Measurement of Corrosion Product Concentration in The Feed Water System of A Power Plant (발전소 급수계통 부식생성물 농도 측정에 관한 연구)

  • Moon, Jeon Soo;Lee, Jae Kun
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.151-155
    • /
    • 2011
  • The iron oxide particles could be resulted from the corrosion of the circulating water system of a power plant. Because it may be one of the trouble materials which affect the power generation efficiency due to the deposition on steam generator tube and turbine blade, the continuous observation of its concentration is very important. The laser induced break-down detection (LIBD) technology was applied to monitor continuously the concentration of corrosion products with the detection limit of ppb level. The measurement system consists of a Nd:YAG pulsed laser, a polarizing beam splitter, a flow-type sample cell, an acoustic emission sensor, a high speed data acquisition board, a personal computer, etc.. The performance test results confirmed that this technology can be effective to monitor the corrosion product concentration of the circulating water system of a power plant.

Investigation of Giant Magnetoresistance in Vacuum-Annealed NiFe/Ag Discontinuous Multilayers

  • Park, Chang-Min;Kim, Young-Eok;Shin, Kyung-Ho
    • Journal of Magnetics
    • /
    • v.2 no.2
    • /
    • pp.50-54
    • /
    • 1997
  • The vacuum-annealed Ni80Fe20/Ag discontinuous multilayers were found to show giant magnetoresistive behaviors comparable to those of corresponding multilayers annealed at atmospheric pressure in a mixture of H2 and Ar. This vacuum-annealing process will offer potential advantages, enabling a continuous batch process from the deposition to the annealing. Their giant magnetoresistive behaviors were attributed to the magnetostatic coupling that are induced at the edges of the discontinuous magnetic grains. We also present our results about the multilayer patterned into a basic device for the magnetic field sensor.

  • PDF

Growth of Vertically Aligned CNTs with Ultra Thin Ni Catalysts

  • Ryu, Je-Hwang;Yu, Yi-Yin;Lee, Chang-Seok;Jang, Jin;Park, Kyu-Chang;Kim, Ki-Seo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.62-66
    • /
    • 2008
  • We report on the growth mechanism of vertically aligned carbon nanotubes (VACNTs) using ultra thin Ni catalysts and direct current plasma enhanced chemical vapor deposition (PECVD) system. The CNTs were grown with -600 V bias to substrate electrode and catalyst thickness variation of 0.07 nm to 3 nm. The CNT density was reduced with catalyst thickness reduction and increased growth time. Cone like CNTs were grown with ultra thin Ni thickness, and it results from an etch of carbon network by reactive etchant species and continuous carbon precipitation on CNT walls. Vertically aligned sparse CNTs can be grown with ultra thin Ni catalyst.

TiN coatings by reactive magnetron sputtering under substrate bias (기판바이어스 변화에 따른 반응성 마그네트론 스퍼터링에 의한 TiN 코팅)

  • Seo, Pyeong-Seop;Han, Man-Geun;Park, Won-Geun;Jeon, Seong-Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.45-46
    • /
    • 2008
  • Hard coatings of TiN which exhibit a large variation in their electrical resistivities, have been prepared in magnetron sputtering system using bipolar pulsed DC generator. TiN coatings have also been prepared using a DC generator in the same sputtering system under identical deposition conditions. Microstructural, Mechanical, Crystallographic properties of TiN films using continuous and bipolar pulsed DC generators were examined. Field emission scanning microscope and Nanoindenter have been used to characterize the coatings.

  • PDF

Study on Fiber Laser Annealing of p-a-Si:H Deposition Layer for the Fabrication of Interdigitated Back Contact Solar Cells (IBC형 태양전지 제작을 위한 p-a-Si:H 증착층의 파이버 레이저 가공에 관한 연구)

  • Kim, Sung-Chul;Lee, Young-Seok;Han, Kyu-Min;Moon, In-Yong;Kwon, Tae-Young;Kyung, Do-Hyun;Kim, Young-Kuk;Heo, Jong-Kyu;Yoon, Ki-Chan;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.430-430
    • /
    • 2008
  • Using multi plasma enhanced chemical vapor deposition system (Multi-PECVD), p-a-Si:H deposition layer as a $p^+$ region which was annealed by laser (Q-switched fiber laser, $\lambda$ = 1064 nm) on an n-type single crystalline Si (100) plane circle wafer was prepared as new doping method for single crystalline interdigitated back contact (IBC) solar cells. As lots of earlier studies implemented, most cases dealt with the excimer (excited dimer) laserannealing or crystallization of boron with the ultraviolet wavelength range and $10^{-9}$ sec pulse duration. In this study, the Q-switched fiber laser which has higher power, longer wavelength of infrared range ($\lambda$ = 1064 nm) and longer pulse duration of $10^{-8}$ sec than excimer laser was introduced for uniformly deposited p-a-Si:H layer to be annealed and to make sheet resistance expectable as an important process for IBC solar cell $p^+$ layer on a polished n-type Si circle wafer. A $525{\mu}m$ thick n-type Si semiconductor circle wafer of (100) plane which was dipped in a buffered hydrofluoric acid solution for 30 seconds was mounted on the Multi-PECVD system for p-a-Si:H deposition layer with the ratio of $SiH_4:H_2:B_2H_6$ = 30:120:30, at $200^{\circ}C$, 50 W power, 0.2 Torr pressure for 20 minutes. 15 mm $\times$ 15 mm size laser cut samples were annealed by fiber laser with different sets of power levels and frequencies. By comparing the results of lifetime measurement and sheet resistance relation, the laser condition set of 50 mm/s of mark speed, 160 kHz of period, 21 % of power level with continuous wave mode of scanner lens showed the features of small difference of lifetime and lowering sheet resistance than before the fiber laser treatment with not much surface damages. Diode level device was made to confirm these experimental results by measuring C-V, I-V characteristics. Uniform and expectable boron doped layer can play an important role to predict the efficiency during the fabricating process of IBC solar cells.

  • PDF

New Ruthenium Complexes for Semiconductor Device Using Atomic Layer Deposition

  • Jung, Eun Ae;Han, Jeong Hwan;Park, Bo Keun;Jeon, Dong Ju;Kim, Chang Gyoun;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.363-363
    • /
    • 2014
  • Ruthenium (Ru) has attractive material properties due to its promising characteristics such as a low resistivity ($7.1{\mu}{\Omega}{\cdot}cm$ in the bulk), a high work function of 4.7 eV, and feasibility for the dry etch process. These properties make Ru films appropriate for various applications in the state-of-art semiconductor device technologies. Thus, it has been widely investigated as an electrode for capacitor in the dynamic random access memory (DRAM), a metal gate for metal-oxide semiconductor field effect transistor (MOSFET), and a seed layer for Cu metallization. Due to the continuous shrinkage of microelectronic devices, better deposition processes for Ru thin films are critically required with excellent step coverages in high aspect ratio (AR) structures. In these respects, atomic layer deposition (ALD) is a viable solution for preparing Ru thin films because it enables atomic-scale control of the film thickness with excellent conformality. A recent investigation reported that the nucleation of ALD-Ru film was enhanced considerably by using a zero-valent metallorganic precursor, compared to the utilization of precursors with higher metal valences. In this study, we will present our research results on the synthesis and characterization of novel ruthenium complexes. The ruthenium compounds were easy synthesized by the reaction of ruthenium halide with appropriate organic ligands in protic solvent, and characterized by NMR, elemental analysis and thermogravimetric analysis. The molecular structures of the complexes were studied by single crystal diffraction. ALD of Ru film was demonstrated using the new Ru metallorganic precursor and O2 as the Ru source and reactant, respectively, at the deposition temperatures of $300-350^{\circ}C$. Self-limited reaction behavior was observed as increasing Ru precursor and O2 pulse time, suggesting that newly developed Ru precursor is applicable for ALD process. Detailed discussions on the chemical and structural properties of Ru thin films as well as its growth behavior using new Ru precursor will be also presented.

  • PDF

Capping Intercrystalline Defects of Polycrystalline UiO-66 Membranes by Polydimethylsiloxane Coating (폴리다이메틸실록산 코팅을 통한 다결정성 UiO-66 분리막의 비선택적 결정립계 결함 캡핑)

  • Ik Ji Kim;Hyuk Taek Kwon
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.71-75
    • /
    • 2023
  • In general, the presence of non-selective intercrystalline (grain boundary) defects in polycrystalline metal-organic framework (MOF) or zeolite membranes, which are known to be ca. 1 nm in size, causes lower membrane performance (selectivity) than the intrinsically expected. In this study we show that applying a thin polymeric coating of polydimethylsiloxane (PDMS) on a polycrystalline MOF membrane is effective to cap the non-selective intercrystalline defects and therefore improve membrane performance. To demonstrate the concept, first, polycrystalline UiO-66, one of Zr-based MOFs, membranes were prepared by an in-situ solvothermal growth. By controlling membrane growth condition with respect to growth temperature, we were able to obtain polycrystalline UiO-66 membranes at 150 ℃ with intercrystalline defects of which the quantity is not significant, so it can be plugged by the suggested PDMS deposition. Second, their performances were compared before and after the PDMS deposition. As expected, the PDMS deposition ended up with a noticeable increase in CO2/N2 ideal selectivity from 6 to 14, indicating successful intercrystalline defect plugging. However, the enhancement in CO2/N2 selectivity was accompanied by a significant reduction in CO2 permeance from 5700 to 33 GPU because the PDMS deposition not only plugs defects but also forms a continuous coating on membrane surface, adding an additional transport resistance.

Growth and Chrarcterization of $SiO_x$ by Pulsed ECR Plasma (Pulsed ECR PECVD를 이용한 $SiO_x$ 박막의 성장 및 특성분석)

  • Lee, Ju-Hyeon;Jeong, Il-Chae;Chae, Sang-Hun;Seo, Yeong-Jun;Lee, Yeong-Baek
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.212-217
    • /
    • 2000
  • Dielectric thin films for TFT(thin film transistor)s, such as silicon nitride$(Si_3N_4)$ and silicon oxide$(SiO_2)$, are usually deposited at $200~300^{\circ}C$. In this study, authors have tried to form dielectric films not by deposition but by oxidation with ECR(Electron Cyclotron Resonance) oxygen plasma, to improve the interface properties was not intensionally heated during oxidation. THe oxidation was performed consecutively without breaking vacuum after the deposition of a-Si: H films on the substrate to prevent the introduction of impurities. In this study, especially pulse mode of microwave power has been firstly tried during FCR oxygen plasma formation. Compared with the case of the continuous wave mode, the oxidation with the pulsed ECR results in higher quality silicon oxide$SiO_X$ films in terms of stoichiometry of bonding, dielectric constants and surface roughness. Especially the surface roughness of the pulsed ECR oxide films dramatically decreased to one-third of that of the continuous wave mode cases.

  • PDF

Surface modification of polypropylene membrane to improve antifouling characteristics in a submerged membrane-bioreactor: Ar plasma treatment

  • Zhou, Jin;Li, Wei;Gu, Jia-Shan;Yu, Hai-Yin
    • Membrane and Water Treatment
    • /
    • v.1 no.1
    • /
    • pp.83-92
    • /
    • 2010
  • To improve the antifouling characteristics of polypropylene hollow fiber microporous membranes in a submerged membrane-bioreactor for wastewater treatment, the surface-modification was conducted by Ar plasma treatment. Surface hydrophilicity was assessed by water contact angle measurements. The advancing and receding water contact angles reduced after the surface modification, and hysteresis between the advancing and receding water contact angles was enlarged after Ar plasma treatment due to the increased surface roughness after surface plasma treatment. After continuous operation in a submerged membrane-bioreactor for about 55 h, the flux recovery after water cleaning and the flux ratio after fouling were improved by 20.0 and 143.0%, while the reduction of flux was reduced by 28.6% for the surface modified membrane after 1 min Ar plasma treatment, compared to those of the unmodified membrane. Morphological observations showed that the mean membrane pore size after Ar plasma treatment reduced as a result of the deposition of the etched species; after it was used in the submerged membrane-bioreactor, the further decline of the mean membrane pore size was caused by the deposition of foulants. X-ray photoelectron spectroscopy and infrared spectroscopy confirmed that proteins and polysaccharide-like substances were the main foulants in the precipitate.