• Title/Summary/Keyword: continuous bridge

Search Result 547, Processing Time 0.029 seconds

Analytical evaluation of the influence of vertical bridge deformation on HSR longitudinal continuous track geometry

  • Lai, Zhipeng;Jiang, Lizhong;Liu, Xiang;Zhang, Yuntai;Zhou, Tuo
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.473-488
    • /
    • 2022
  • A high-speed railway (HSR) bridge may undergo long-term deformation due to the degradation of material stiffness, or foundation settlement during its service cycle. In this study, an analytical model is set up to evaluate the influence of this long-term vertical bridge deformation on the track geometry. By analyzing the structural characteristics of the HSR track-bridge system, the energy variational principle is applied to build the energy functionals for major components of the track-bridge system. By further taking into account the interlayer's force balancing requirements, the mapping relationship between the deformation of the track and the one of the bridge is established. In order to consider the different behaviors of the interlayers in compression and tension, an iterative method is introduced to update the mapping relationship. As for the validation of the proposed mapping model, a finite element model is created to compare the numerical results with the analytical results, which show a good agreement. Thereafter, the effects of the interlayer's different properties of tension and compression on the mapping deformations are further evaluated and discussed.

SEISMIC RESPONSE CHARACTERISTICS OF THE MULTI-SPAN CONTINUOUS GBRIDGE WITH SHEAR KEYS (전단키와 있는 다경간 연속교의 지진응답특성)

  • 이지훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.120-127
    • /
    • 1998
  • This paper deals with the dynamic responses of the multi-span continuous bridge with longitudinal shear keys. It is motivated by a need to understand the effects of longitudinal shear keys which may be used for the reduction of the longitudinal seismic force in continuous bridges. The results show that (1) The force reduction of fixed pier is proportional to the ratio of gap size and elastic maximum displacement of the bridges without shear keys ; (2) The thermal movement has little effect on the response of the continuous bridges with shear keys. Also the simplified equation is proposed to calculate the maximum response of the continuous bridges with longitudinal shear keys. The equation requires only the elastic analysis results of the bridge and the gap size between superstructure and shear keys.

  • PDF

The Characteristics of Structural Behavior of Temporary Bridge Using Continuous Cross Beam (일체형 가로보를 이용한 임시교량의 구조적 거동특성)

  • Joo, Hyung-Joong;Lee, Young-Geun;Lee, Dong-Hyuk;Yoon, Soon-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.559-569
    • /
    • 2012
  • Cross-beam in the existing temporary bridge system is usually installed to prevent the lateral-torsional buckling of girders and to promote the construction efficiency. However, most of this cross-beams are connected to the girder web by bolts, and therefore, gravitational load resisting capacity of the cross-beams are negligibly small. In recent years, new temporary bridge system, in which the cross-beams and girders are connected to resist the external loads as a unit, was developed. In this paper, we present the experimental and analytical study results pertaining to the structural behavior and load carrying capacity of new temporary bridge system. From the results of study, it was found that the continuous cross-beam increased the flexural rigidity and reduced the maximum flexural stress in the girder. In addition, it was also found that the new temporary bridge system developed is more appropriate for the application in the long-span temporary bridge.

A comprehensively overall track-bridge interaction study on multi-span simply supported beam bridges with longitudinal continuous ballastless slab track

  • Su, Miao;Yang, Yiyun;Pan, Rensheng
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.163-174
    • /
    • 2021
  • Track-bridge interaction has become an essential part in the design of bridges and rails in terms of modern railways. As a unique ballastless slab track, the longitudinal continuous slab track (LCST) or referred to as the China railway track system Type-II (CRTS II) slab track, demonstrates a complex force mechanism. Therefore, a comprehensive track-bridge interaction study between multi-span simply supported beam bridges and the LCST is presented in this work. In specific, we have developed an integrated finite element model to investigate the overall interaction effects of the LCST-bridge system subjected to the actions of temperature changes, traffic loads, and braking forces. In that place, the deformation patterns of the track and bridge, and the distributions of longitudinal forces and the interfacial shear stress are studied. Our results show that the additional rail stress has been reduced under various loads and the rail's deformation has become much smoother after the transition of the two continuous structural layers of the LCST. However, the influence of the temperature difference of bridges is significant and cannot be ignored as this action can bend the bridge like the traffic load. The uniform temperature change causes the tensile stress of the concrete track structure and further induce cracks in them. Additionally, the influences of the friction coefficient of the sliding layer and the interfacial bond characteristics on the LCST's performance are discussed. The systematic study presented in this work may have some potential impacts on the understanding of the overall mechanical behavior of the LCST-bridge system.

An analytical solution to the vibration characteristics for continuous girder bridge-track coupling system and its application

  • Feng, Yulin;Jiang, Lizhong;Zhou, Wangbao;Zhang, Yuntai;Liu, Xiang
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.601-612
    • /
    • 2021
  • To study the vibration characteristics of a high-speed railway continuous girder bridge-track coupling system (HSRCBT), a coupling vibration analysis model of an m-span continuous girder bridge-subgrade-track system with n-span approach bridge was established. The model was based on the energy and its variational method, where both the interlaminar slip and shear deformation effects were considered. In addition, the free vibration equations and natural boundary conditions of the HSRCBT were derived. Further, according to the coordination principle of deformation and mechanics, an analytical method for calculating the natural vibration frequencies of the HSRCBT was obtained. Three typical bridge-subgrade-track coupling systems of high-speed railway were taken and the results of finite element analysis were compared to those of the analytical method. The errors between the simulation results and calculated values of the analytical method were less than 3%, thus verifying the analytical method proposed in this paper. Finally, the analytical method was used to investigate the influence of the number of the approach bridge spans and the interlaminar stiffness on the natural vibration characteristics of the HSRCBT based on the degree of sensitivity. The results suggest the approach bridges have a critical number of spans and in general, the precision requirements of the analysis could be met by using 6-span approach bridges. The interlaminar vertical compressive stiffness has very little influence on the low-order natural vibration frequency of HSRCBT, but does have a significant influence on higher-order natural vibration frequency. As the interlaminar vertical compressive stiffness increases, the degree of sensitivity to interlaminar stiffness of each of the HSRCBT natural vibration characteristics decrease and gradually approach zero.

Seismic Analysis of the Multi-Span Continuous Bridge Considering the Friction of the Expansion Bearings (가동받침 마찰을 고려한 다경간 연속교의 내진 해석)

  • Juhn, Gui Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.63-70
    • /
    • 1994
  • This study presents the nonlinear dynamic analysis method of the multi-span continuous bridge considering the friction of the expansion bearings. Also the numerical analysis is performed for estimating the effect of the friction on the seismic response of the multi-span continuous bridge under the longitudinal ground motion compatible to Korean bridge design response spectra. It is found that even small friction coefficient of the expansion bearings has significant effect on reducing the superstructure displacement due to energy dissipation and distributing the inertia force of the superstructure to the substructures due to frictional force. It is observed that such favorable friction effects increase as the friction coefficient increases and the magnitude of the ground motion decreases. Therefore, the friction of the expansion bearings can be effectively used for the safe and economic design of the continuous span bridge with many spans and large superstructure weight under the small to medium scale longitudinal ground motions.

  • PDF

Monitoring of Long-Term Behavior of The Continuous IPC Girder Bridge (IPC거더 연속교의 장기거동 모니터링)

  • Lee, Hong-Woo;Ahn, Jeong-Seang;Kim, Kyoung-Won;Yu, Sang-Hui
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.349-352
    • /
    • 2008
  • IPC girder is more prestressed and has smaller sectional area than the conventional PSC-I type girder due to incremental prestressing along the construction process. The continuous IPC girder bridge may have problems in serviceability and stresses at internal supports because it is very flexible. In this paper, The long-term behavior of the continuous IPC girder bridge is studied through long-term structural analysis and monitoring the deflections. The long-term behavior is monitored right before the introduction of 2nd prestressing that is the construction process different from the conventional PSC-I type girder bridge. The total station of high-precision was used in measuring the deflections. According to the monitoring result so far, the continuous IPC girder bridges does not show remarkable long-term behavior like severe camber or deflection and the measured deflections are very similar to the results of long-term structural analysis.

  • PDF

A Study on the Structural Behaviors of Interior Support of 6 Span SCP Continuous Girder Bridge (6경간 SCP 거더교의 연속화에 따른 중간 지점부 구조거동에 관한 연구)

  • Yhim, Sung-Soon;Son, Suk-Ho;Seo, Ki-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.135-143
    • /
    • 2004
  • In this paper, 6 span SCP continuous girder bridge's structural behavior were studied by analytic and experimental method To study structural behavior of SCP girder, we used PSC theory and steel girder theory. To examine slab concrete crack, concrete stress, and fatigue stress of steel, we achieved a static load and fatigue test. In the result, 6 span SCP girder bridge connected at the interior support about actuality bridge have enough structural capacity under service loads.

Effect of temperature gradient on track-bridge interaction

  • Kumar, Rakesh;Upadhyay, Akhil
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • Considerable longitudinal rail forces and displacements may develop in continuous welded rail (CWR) track on long-span bridges due to temperature variations. The track stability may be disturbed due to excessive relative displacements between the sleepers and ballast bed and the accompanied reduction in frictional resistance. For high-speed tracks, however, solving these problems by installing rail expansion devices in the track is not an attractive solution as these devices may cause a local disturbance of the vertical track stiffness and track geometry which will require intensive maintenance. With reference to temperature, two actions are considered by the bridge loading standards, the uniform variation in the rail and deck temperature and the temperature gradient in deck. Generally, the effect of temperature gradient has been disregarded in the interaction analysis. This paper mainly deals with the effect of temperature gradient on the track-bridge interaction with respect to the support reaction, rail stresses and stability. The study presented in this paper was not mentioned in the related codes so far.

Design of Dang-San Steel Railway Bridge (당산철교의 설계)

  • 유동호;김선일
    • Computational Structural Engineering
    • /
    • v.12 no.4
    • /
    • pp.69-69
    • /
    • 1999
  • Design of Dangsan Steel Railway Bridge(a part of Seoul Subway Line NO. 2), which is supposed to be replaced after its 15years survice, was done, and the reconstruction has begun in Dec. 1997. The design include new superstruc-ture and bridge piers, retrofitting of the foun-dation, rail system, electric and signal, etc. In this paper, design of the structure is mainly summarized. The main span superstructure, across Han river, is composite section which is com-posed of steel box and reinforced concrete deck slab with 9 span continuous. The superstructure for the approaches is bottom througth type 2-cell steel box girder with steel floor system and concrete deck slab with 3 or 4 span continuous. The bridge piers was planned to be reconstructed based upon the result from the various investi-gations, while the foundation(cassion and pile foundation) was planned to be retrofitted. For superstructure erection, the method of combination of barge bent and heavy lifting and the launching truss method was investigated for the main span and approach spans, respectively.

  • PDF