• Title/Summary/Keyword: continuous bridge

Search Result 548, Processing Time 0.023 seconds

Derivation of Factors for Traditional Market Revitalization through Spatial Network Analysis - Focused on Yukgeori Market in Cheongju City - (공간 네트워크 분석을 통한 전통시장 활성화 요인 도출 - 청주시 육거리 시장을 중심으로 -)

  • Jeong, Sang-Kyu;Ban, Yong-Un
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.10
    • /
    • pp.55-61
    • /
    • 2018
  • Changes in consumer purchasing patterns due to construction of large Western-style commercial buildings and introduction of new purchasing methods in South Korea in the 1990s led to a gradual decline in traditional markets. Under such a new environment, Yukgeori market, one of Korea's exemplary markets, has continued to develop and survive, while maintaining the traditional market form of Korea, both physically and operationally. Therefore, to find the characteristics of spatial configurations supporting the revitalization of traditional market, we deduced social attributes of spaces in street network of Cheongju city and the neighborhood including Yukgeori market by calculating the depths of nodes in the network using analysis models based on space syntax. The results illustrated that long street with the function to attract people and acts as a bridge of traffic and communication between highly modernized commercial area and traditional market can lead to continuous win-win development of both areas and the revitalization of traditional market through the promotion of social activities in the market. We expect that sound and sustainable development of contemporary cities, which lost tradition, will be achieved through the results of this study.

Effects of electrostimulation therapy in facial nerve palsy

  • Sommerauer, Laura;Engelmann, Simon;Ruewe, Marc;Anker, Alexandra;Prantl, Lukas;Kehrer, Andreas
    • Archives of Plastic Surgery
    • /
    • v.48 no.3
    • /
    • pp.278-281
    • /
    • 2021
  • Facial palsy (FP) is a functional disorder of the facial nerve involving paralysis of the mimic muscles. According to the principle "time is muscle," early surgical treatment is tremendously important for preserving the mimic musculature if there are no signs of nerve function recovery. In a 49-year-old female patient, even 19 months after onset of FP, successful neurotization was still possible by a V-to-VII nerve transfer and cross-face nerve grafting. Our patient suffered from complete FP after vestibular schwannoma surgery. With continuous application of electrostimulation (ES) therapy, the patient was able to bridge the period between the first onset of FP and neurotization surgery. The significance of ES for mimic musculature preservation in FP patients has not yet been fully clarified. More attention should be paid to this form of therapy in order to preserve the facial musculature, and its benefits should be evaluated in further prospective clinical studies.

Identification of structural systems and excitations using vision-based displacement measurements and substructure approach

  • Lei, Ying;Qi, Chengkai
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.273-286
    • /
    • 2022
  • In recent years, vision-based monitoring has received great attention. However, structural identification using vision-based displacement measurements is far less established. Especially, simultaneous identification of structural systems and unknown excitation using vision-based displacement measurements is still a challenging task since the unknown excitations do not appear directly in the observation equations. Moreover, measurement accuracy deteriorates over a wider field of view by vision-based monitoring, so, only a portion of the structure is measured instead of targeting a whole structure when using monocular vision. In this paper, the identification of structural system and excitations using vision-based displacement measurements is investigated. It is based on substructure identification approach to treat of problem of limited field of view of vision-based monitoring. For the identification of a target substructure, substructure interaction forces are treated as unknown inputs. A smoothing extended Kalman filter with unknown inputs without direct feedthrough is proposed for the simultaneous identification of substructure and unknown inputs using vision-based displacement measurements. The smoothing makes the identification robust to measurement noises. The proposed algorithm is first validated by the identification of a three-span continuous beam bridge under an impact load. Then, it is investigated by the more difficult identification of a frame and unknown wind excitation. Both examples validate the good performances of the proposed method.

Semantic crack-image identification framework for steel structures using atrous convolution-based Deeplabv3+ Network

  • Ta, Quoc-Bao;Dang, Ngoc-Loi;Kim, Yoon-Chul;Kam, Hyeon-Dong;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.17-34
    • /
    • 2022
  • For steel structures, fatigue cracks are critical damage induced by long-term cycle loading and distortion effects. Vision-based crack detection can be a solution to ensure structural integrity and performance by continuous monitoring and non-destructive assessment. A critical issue is to distinguish cracks from other features in captured images which possibly consist of complex backgrounds such as handwritings and marks, which were made to record crack patterns and lengths during periodic visual inspections. This study presents a parametric study on image-based crack identification for orthotropic steel bridge decks using captured images with complicated backgrounds. Firstly, a framework for vision-based crack segmentation using the atrous convolution-based Deeplapv3+ network (ACDN) is designed. Secondly, features on crack images are labeled to build three databanks by consideration of objects in the backgrounds. Thirdly, evaluation metrics computed from the trained ACDN models are utilized to evaluate the effects of obstacles on crack detection results. Finally, various training parameters, including image sizes, hyper-parameters, and the number of training images, are optimized for the ACDN model of crack detection. The result demonstrated that fatigue cracks could be identified by the trained ACDN models, and the accuracy of the crack-detection result was improved by optimizing the training parameters. It enables the applicability of the vision-based technique for early detecting tiny fatigue cracks in steel structures.

THE IDENTIFICATION OF MALAYSIAN CONTRACTOR SATISFACTION DIMENSIONS: A STRATEGY FOR CONTINUOUS IMPROVEMENT

  • Md Asrul Nasid Masrom;Martin Skitmore;Adrian Bridge
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.335-339
    • /
    • 2011
  • The unique characteristics of the construction industry - such as the fragmentation of its processes, varied scope of works and diversity of its participants - are contributory factors to poor project performance. Several issues are unresolved due to the lack of a comprehensive technique to measure project outcomes including: inefficient decision making, insufficient communication, uncertain site conditions, a continuously changing environment, inharmonious working relationships, mismatched objectives within the project team and a blame culture. One approach to overcoming these problems appears to be to measure performance by gauging contractor satisfaction (Co-S) levels, but this has not been widely investigated as yet. Additionally, the key Co-S dimensions at the project level are still not fully identified. This paper concerns a study of satisfaction dimensions, primarily by a postal questionnaire survey of construction contractors registered by the Malaysian Construction Industry Development Board (CIDB). Eight satisfaction dimensions are identified that are significantly and substantially relate to these contractors - comprising: project cost performance, schedule performance, product performance, design satisfaction, site safety, project profitability, business performance and relationships between participants. -Each of these dimensions is accorded different priority levels of satisfaction by different contractors. The output of this study will be useful in raising the awareness and understanding of project teams regarding contractors' needs, mutual objectives and open communication to help to deliver a successful project.

  • PDF

Bearing capacity of a Flysch rock mass from the characterization of the laboratory physical properties and the Osterberg test

  • Hernan Patino;Ruben A. Galindo
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.573-594
    • /
    • 2024
  • This article presents a research study, with both laboratory and field tests, of a deep foundation in a markedly anisotropic medium. Particularly it has focused on the evaluation of the behavior of a pile, one meter in diameter, embedded in a rocky environment with difficult conditions, in the Flysch of the Spanish city of San Sebastián. To carry out the research, the site of a bridge over the Urumea River was chosen, which was supported by pre-excavated reinforced concrete piles. 4 borings were carried out, by the rotation and washing method, with continuous sampling and combined with flexible dilatometer tests. In the field, an Osterberg load test (O-cell) was performed, while in the laboratory, determinations of natural moisture, natural unit weight, uniaxial compressive strength (UCS), point load strength (PLS), compressive wave propagation velocity (Vc) and also triaxial and direct shear tests were carried out. The research results indicate the following: a) the empirical functions that correlate the UCS with the PLS are not always linear; b) for the studied Flysch it is possible to obtain empirical functions that correlate the UCS with the PLS and with the Vc; c) the bearing capacity of the studied Flysch is much greater than if it is evaluated by different load capacity theories; d) it is possible to propose an empirical function that allows evaluating the mobilized shear strength (τm), as a function of the UCS and the displacement relative of the pile (δr).

A Study on Moment Gradient Factor for Inelastic Lateral-Torsional Buckling Strength of Stepped I-Beam Subjected to Linear Moment Gradient (선형 모멘트 하중을 받는 계단식 단면변화 I형보의 비탄성 횡-비틀림 좌굴강도산정을 위한 모멘트 구배계수 연구)

  • Park, Jong-Sup;Son, Ji-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.53-60
    • /
    • 2008
  • The cross-sections of continuous multi-span beams sometimes suddenly increase, or become stepped, at the interior supports of continuous beams to resist high negative moments. The three-dimensional finite-element program ABAQUS (2007) was used to analytically investigate the inelastic lateral-torsional buckling behavior of stepped beams subjected to linear moment gradient and resulted in the development of design equations. The ratios of the flange thickness, flange width, and stepped length of beam are considered for the analytical parameters. Two groups of 27 cases and 36 cases, respectively, were analyzed for doubly and singly stepped beams in the inelastic buckling range. The combined effects of residual stresses and geometrical imperfection on inelastic lateral-torsional buckling of beams are considered. First, the distributions of residual stress of the cross-section is same as shown in Pi and Trahair (1995), and the initial geometric imperfection of the beam is set by central displacement equal to 0.1% of the unbraced length of beam. The new proposed equations definitely improve current design methods for the inelastic lateral-torsional buckling problem and increase efficiency in building and bridge design.

Effects of Lateral Bracing on the Load Distribution and Torsional Behaviors in Continuous Two-Girder Bridges (연속 2-거더교에서 수평브레이싱이 하중 분배 및 비틂 거동에 미치는 영향)

  • Hwang, Min Oh;Yoon, Tae Yang;Park, Yong Myung;Joe, Woom Do Ji;Hwang, Soon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.671-680
    • /
    • 2007
  • In this study, we performed a loading test to evaluate the effect of load distribution on continuous two-span plate-girder bridges with or without bottom lateral bracing using one-fifth-scale bridge specimens. From the test results, when specimens with lateral bracing were loaded eccentrically, the load distribution capacity of the concrete deck and cross beam improved and greater loading was distributed to the other side of the girder subjected to loading. The load distribution rate of the specimens with and without lateral bracing system was evaluated from the analytical model that was verified by the test results. From the result of the quantitative evaluation, when specimen without lateral bracing was loaded eccentrically, mostly 21% of loading according to the concrete deck was distributed to the other side of the girder subjected to loading. However, when specimen with lateral bracing was loaded eccentrically, the load distribution rate increased by 1.7 times as all cross beams, bracing and concrete deck participated in load distribution. The reason is that the torsional rigidity increased as the model with lateral bracing behaved like a pseudo-closed box section.

Determination of Optimum Heating Regions for Thermal Prestressing Method Using Artificial Neural Network (인공신경망을 이용한 온도프리스트레싱 공법의 적정 가열구간 설정에 관한 연구)

  • Kim, Jun Hwan;Ahn, Jin-Hee;Kim, Kang Mi;Kim, Sang Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.695-702
    • /
    • 2007
  • The Thermal Prestressing Method for continuous composite girder bridges is a new design and construction method developed to induce initial composite stresses in the concrete slab at negative bending regions. Due to the induced initial stresses, prevention of tensile cracks at the concrete slab, reduction of steel girder section, and reduction of reinforcing bars are possible. Thus, the construction efficiency can be improved and the construction can be made more economical. The method for determining the optimum heating region of the thermal prestressing method has not been established although such method is essential for improving the efficiency of the design process. The trial-and-error method used in previous studies is far from efficient, and a more rational method for computing optimal heating region is required. In this study, an efficient method for determining the optimum heating region in using the thermal prestressing method was developed based on the neural network algorithm, which is widely adopted to pattern recognition, optimization, diagnosis, and estimation problems in various fields. Back-propagation algorithm, commonly used as a learning algorithm in neural network problems, was used for the training of the neural network. Through case studies of two-span and three-span continuous composite girder bridges using the developed procedure, the optimal heating regions were obtained.

A Study on Inelastic Lateral-Torsional Buckling of Stepped I-Beams Subjected to Pure Bending (균일모멘트를 받는 계단식 I형보의 비탄성 횡-비틀림 좌굴에 관한 연구)

  • Kim, Jong Min;Kim, Seung Jun;Park, Jong Sup;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.237-246
    • /
    • 2008
  • The cross-sections of continuous multi-span beams sometimes suddenly increase, or become stepped, at the interior supports of continuous beams to resist high negative moments. The three-dimensional finite-element program ABAQUS (2006) was used to analytically investigate the inelastic lateral-torsional buckling behavior of stepped beams subjected to pure bending moment and resulted in the development of design equations. The flanges of the smaller cross-section were fixed at 30.48 by 2.54 cm, whereas the width and/or thickness of the flanges of the larger cross-section varied. The web thickness and height of beam was kept at 1.65 cm and 88.9 cm, respectively. The ratios of the flange thickness, flange width, and stepped length of beams are considered analytical parameters. Two groups of 27 cases and 35 cases, respectively, were analyzed for double and single stepped beams. The combined effects of residual stresses and geometrical imperfection on inelastic lateral-torsional buckling of beams are considered. First, the distributions of residual stress of the cross-section is same as shown in Pi, etc (1995), and the initial geometric imperfection of the beam is set by central displacement equal to 0.1% of the unbraced length of beam. The new proposed equations definitely improve current design methods for the inelastic LTB problem and increase efficiency in building and bridge design. The proposed solutions can be easily used to develop new design equation for inelastic LTB resistance of stepped beams subjected to general loading condition such as a concentrated load, a series of concentrated loads or uniformly distributed load.