• Title/Summary/Keyword: continuous bridge

Search Result 548, Processing Time 0.033 seconds

Field Investigation of Composite Behavior in High-speed Railway PSC Box Girder Bridge (고속전철 PSC 박스거더교 합성거동의 현장 계측에 관한 연구)

  • 김영진;김병석;강재윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.995-1000
    • /
    • 2000
  • Segmentally erected prestressed concrete box girder bridges have been widely used in Korean high speed railway. Segmental erection has been accomplished along the longitudinal direction and across the depth of cross section. The cross section is similar to a composite cross section, composed of old and new segments. Because these segments have different time-dependent creep and shrinkage properties, a stress redistribution takes place during the construction period. It is the main objective in this research to investigate this behavior. An actual bridge was instrumented with 96 vibrating wire embedded type strain gauges, 6 electronic type steel strain gauges, and 75 thermocouples. Two span continuous high speed railway bridge was selected. Two points of importance, such as the midpoint of the first span and the point of interior support, along the span of the girder were chosen to monitor the time dependent behaviors for an extended period of time. The data collection was starting just after concrete girder were cast and is still going on. According to the measured results, the strain distributions across the depth of the section at midspan and interior support were not continuous and the important redistribution of stresses takes place. Thus, rational design of prestressed concrete composite box girder bridges need.

A Case Study on Continuous Prestressed Concrete Composite Girder with Cross-beam Anchorage System (가로보를 정착구조로 하는 연속화 PSC 합성거더 시공사례)

  • Park, Hyun-Myo;Huh, Young;Kim, Yun-Hwan;Kim, Seok-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.451-452
    • /
    • 2010
  • Prestressed concrete I girder bridge has been one of the most widely used bridges in the world because of its excellent construction feasibility, economic efficiency, serviceability, and safety. But in Korea, the PSC bridge has not been utilized for long span because of high girder height in its standard design. Thus, the results confirm that it is possible to applicate the continuous PSC girder with end cross beam anchorage system using multi-stage prestressing technique.

  • PDF

Boundary Current Mode Operated Bridgeless Boost Converter for Power Factor Correction (역률개선을 위해 경계전류모드로 동작하는 브리지리스 부스트 컨버터)

  • Yu Byung-Gyu;Lee Sung-Se;Han Sang-Kyu;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.90-94
    • /
    • 2003
  • Recently, many nations have released standard such as IEC 1000-3-2 and IEEE 519 which impose a limit on the harmonic current drawn by equipment connected to AC line in order to prevent the distortion of an AC line. Among the wide variety of active methods for improving power factor and harmonic distortion, the boost converter is very effective because it has a continuous line current , small choke filter and high power factor. In high power application, however, the bridge diode loss in the boost converter has made the efficiency lower and the temperature of the board higher. A new approach without bridge diode to make the same characteristics of the conventional boost converter has also been developed. This paper present the comparisons between the continuous current mode(CCM) operated conventional boost converter and the boundary current mode(BCM) operated the bridgeless boost converter for high efficiency and high power factor.

  • PDF

The time-dependent analysis of restraint moment in continous PSC bridge (PSC 2경간 연속화에 따른 구속모멘트의 시간의존해석)

  • Koo, Min-Se;Choi, In-Sik;Park, Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.417-424
    • /
    • 2001
  • It is very important to know the magnitude of the restraint moment which is appeared at the inner-support of the continuous PSC girder. The Age-adjusted Effective Modulus Method(AEMM) is used to get the magnitude of the restraint moment for the purpose of the time-dependent analysis of the concrete. The important factors for computing the restraint moment, the creep coefficient and the shrinkage strain are computed by comparing Korean specification with AC1209. The restrain moment is created by the individual continuity load. The main purpose of this paper is ensuring the safety of structure by acquiring the time-dependent stress acting on the concrete because the process of construction is getting difficult due to the advance of technology. The negative moment at the inner-support is decreased about 55% by introducing the process of making the continuous bridge relatively early.

  • PDF

Shrinkage and Creep Effects on Continuous Prestressed Concrete Girder Bridges (연속 프리스트레스트 콘크리트 거더교에서 건조수축과 크리프의 영향)

  • Cho, Sun-Kyu;Youn, Seok-Goo;Lee, Jong-Min;Choi, Yun-Wang;Chung, Jee-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.417-420
    • /
    • 2004
  • The Prestressed concrete girder bridges(PSC girder bridges), consisting of prestressed concrete girders and cast-in-place deck slabs, are sensitive to creep and shrinkage of concrete. Shrinkage and creep produce additional internal forces md deformations in PSC girder bridges. The long-term behavior of the PSC girder bridges depends on time-dependent properties of materials, amount of prestressing, methods and sequences of construction and age at loading. The purpose of this study is to predict the long-term behavior of PSC girder bridge. For this purpose, Computer program for Time-dependent analysis of PSC girder bridge has been developed. thereafter, Time-dependent analysis using developed computer program was carried out about 3-span continuous PSC girder bridges. Various construction timing sequences were used for parametric study.

  • PDF

A Study on Performance Elevation of the deteriorated Concrete Girder Bridge by Continuous and External Tendons (연속화와 외부 프리스트레스 도입에 의한 노후된 콘크리트 거더교의 성능향상에 관한 연구)

  • Park, Seung-Bum;Hong, Seok-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.159-166
    • /
    • 2000
  • The development of external prestressing methods has been one of the major trends in the concrete bridge constructions over the past decades. One of the promising methods to enhance the flexural strength of a externally prestressed girder is to place the tendons with large eccentricities. The analysis and design of composite girders prestressed by external tendons involve difficulties related mainly to the position of anchorages and the construction sequences. This study was conducted on the concrete bridges reinforced by the continuous girders and the external prestressing. The test results in this study showed that the external prestressing of a composite girder increased the range of the elastic behavior, reduced deflections, increased ultimate strength, and added to the redundancy by providing the multiple stress paths.

  • PDF

A continuity method for bridges constructed with precast prestressed concrete girders

  • Lee, Hwan Woo;Barnes, Robert W.;Kim, Kwang Yang
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.879-898
    • /
    • 2004
  • A method of making simply supported girders continuous is described for bridges with spans of 30-45 m. The splicing method takes advantage of an induced secondary moment to transform the self-weight stresses in the precast simply supported girders into values representative of a continuous girder. The secondary moment results from prestressing of continuity tendons and detensioning of temporary tendons in the girders. Preliminary sections are selected for spliced U-girder bridges with a range of span lengths. Use of the proposed technique results in girder depth reductions of 500-800 mm when compared to standard simply supported I-girder bridges. The flexural behavior of an example bridge with 40-m spans is examined to illustrate the necessary considerations for determining the optimum sequence of splicing operations.

Dynamic analysis of a cable-stayed bridge using continuous formulation of 1-D linear member

  • Yu, Chih-Peng;Cheng, Chia-Chi
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.271-295
    • /
    • 2012
  • This paper presents the solution scheme of using the continuous formulation of 1-D linear member for the dynamic analysis of structures consisting of axially loaded members. The context describes specific applications of such scheme to the verification of experimental data obtained from field test of bridges carried out by a microwave interferometer system and velocimeters. Attention is focused on analysis outlines that may be applicable to in-situ assessment for cable-stayed bridges. The derivation of the dynamic stiffness matrix of a prismatic member with distributed properties is briefly reviewed. A back calculation formula using frequencies of two arbitrary modes of vibration is next proposed to compute the tension force in cables. Derivation of the proposed formula is based on the formulation of an axially loaded flexural member. The applications of the formulation and the proposed formula are illustrated with a series of realistic examples.

Ultimate Flexural Strength Evaluation of Construction Joints in PSC Bridge Girders (PSC 교량 부재의 시공이음부의 극한 휨강도 평가)

  • 채성태;오병환;김병석;이상희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.279-284
    • /
    • 2002
  • Prestressed concrete(PSC) bridge structures with a number of continuous spans has been segmentally built in many countries. These methods include incremental launching method, movable scaffolding method, full staging method and balanced cantilever method. In these segmentally constructed prestressed concrete bridges, many construction joints exist and these construction joints are weak points in PSC bridges. The prestress force can be introduced prestress force continuously through the construction joints of PSC bridge superstructure using tendon couplers. The main objective of this study is to evaluate the structural behavior and ultimate flexural strength of construction joints in PSC girder bridge members. To this end, a comprehensive experimental program has been set up and a series of full-scale tests have been performed. Ultimate flexural strength of construction joint in PSC members with tendon couplers is decreased by approximately 10% for non-coupled members.

  • PDF

Pounding Mechanism and Mitigation Effect of Pounding between Adjacent Decks during Strong Earthquake (강지진시 인접교량간의 충돌 매커니즘과 충격 저감 효과)

  • Kwon, Young-Rog;Kim, Jin-Woo;Choi, Kwang-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.63-69
    • /
    • 2006
  • An isolated bridge using a laminated rubber bearing provides an elastic support of continuous span and prevents the transmission of excessive seismic force from the substructure of the bridge, which uses a metal bearing, as this permits a relative displacement between the super-and substructure. Hawever, this kind of bridge is caused long periodic, as a result of enlargingtotal thickness of the rubber, since it corresponds to temperature change and increases the horizontal displacement of the superstructure. This paper uses a numerical study to describe the pounding problem between adjacent decks when subjected to a strong earthquake. Furthermore, numerical results are clarified for the buffer rubber used to mitigate the pounding force between adjacent decks.