• Title/Summary/Keyword: continuity and discontinuity

Search Result 68, Processing Time 0.028 seconds

Strategic Planning in SMEs: A Case Study in Indonesia

  • LO, Paulina;SUGIARTO, Sugiarto
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.2
    • /
    • pp.1157-1168
    • /
    • 2021
  • Hotels drive the growth and development of tourism. Despite their important role, many hotels are small and medium-sized firms (SME) that are struggling to survive against fierce competition. Experts agree that strategic planning is vital for SME survival, but it is not wholly applicable for SME managers. Meanwhile, Mintzberg's concept of crafting strategy offers a more productive insight into SME strategic planning, but its abstract nature has historically discouraged empirical research on its practical benefits. This study will be the first to empirically explore the operationalization of Mintzberg's crafting strategy characteristics, and analyze its influence on organizational learning using structural equation model. Using a sample of 50 hotels in Bali, Indonesia, this study reveals that managing pattern and stability, detecting discontinuity, and knowing the business have a positive but weak effect, whereas reconciling change and continuity proves to have a positive and significantly strong effect on organizational learning. This study has bridged the gap between the abstract concepts of crafting strategy, which is a potentially better approach for SMEs, with daily operational practices. This study also proves that Mintzberg's approach can be used to predict organizational learning. This relationship is crucial since previous studies concluded that organizational learning improves company performance.

HERMITE BICUBIC STREAM FUNCTION METHOD FOR INCOMPRESSIBLE FLOW COMPUTATIONS IN TWO DIMENSIONS (이차원 비압축성 유동 계산을 위한 Hermite 겹 3차 유동 함수법)

  • Kim, J.W.
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.13-23
    • /
    • 2008
  • This paper is an extension of previous study[1] on a development of a divergence-free element method using a hermite interpolated stream function. Divergence-free velocity bases defined on rectangles derived herein produce pointwise divergence-free flow fields. Hence the explicit imposition of continuity constraint is not necessary and the Galerkin finite element formulation for velocities does not involve the pressure. The divergence-free element of the previous study employed hermite (serendipity) cubic for interpolation of stream function, and it has been noted a possible discontinuity in variables along element interfaces. This deficiency can be removed by use of a hermite bicubic interpolated stream function, which requires four degrees-of-freedom at each element corners. Those degrees-of-freedom are the unknown variable, its x- and y-derivatives and its cross derivative. Detailed derivations are presented for both solenoidal and irrotational basis functions from the hermite bicubic interpolated stream function. Numerical tests are performed on the lid-driven cavity flow, and results are compared with those from hermite serendipity cubics and a stabilized finite element method by Illinca et al[2].

HERMITE BICUBIC STREAM FUNCTION METHOD FOR INCOMPRESSIBLE FLOW COMPUTATIONS IN TWO DIMENSIONS (이차원 비압축성 유동 계산을 위한 Hermite 쌍 3차 유동 함수법)

  • Kim, J.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.33-41
    • /
    • 2008
  • This paper is an extension of previous study[9] on a development of a divergence-free element method using a hermite interpolated stream function. Divergence-free velocity bases defined on rectangles derived herein produce pointwise divergence-free flow fields. Hence the explicit imposition of continuity constraint is not necessary and the Galerkin finite element formulation for velocities does not involve the pressure. The divergence-free element of the previous study employed hermite serendipity cubic for interpolation of stream function, and it has been noted a possible discontinuity in variables along element interfaces. This deficiency can be removed by use of a hermite bicubic interpolated stream function, which requires at each element corners four degrees-of-freedom such as the unknown variable, its x- and y-derivatives and its cross derivative. Detailed derivations are presented for both solenoidal and irrotational bases from the hermite bicubic interpolated stream function. Numerical tests are performed on the lid-driven cavity flow, and results are compared with those from hermite serendipity cubics and a stabilized finite element method by Illinca et al[7].

  • PDF

HERMITE BICUBIC STREAM FUNCTION METHOD FOR INCOMPRESSIBLE FLOW COMPUTATIONS IN TWO DIMENSIONS (이차원 비압축성 유동 계산을 위한 Hermite 쌍 3차 유동 함수법)

  • Kim, J.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.33-41
    • /
    • 2008
  • This paper is an extension of previous study[9] on a development of a divergence-free element method using a hermite interpolated stream function. Divergence-free velocity bases defined on rectangles derived herein produce pointwise divergence-free flow fields. Hence the explicit imposition of continuity constraint is not necessary and the Galerkin finite element formulation for velocities does not involve the pressure. The divergence-free element of the previous study employed hermite serendipity cubic for interpolation of stream function, and it has been noted a possible discontinuity in variables along element interfaces. This deficiency can be removed by use of a hermite bicubic interpolated stream function, which requires at each element corners four degrees-of-freedom such as the unknown variable, its x- and y-derivatives and its cross derivative. Detailed derivations are presented for both solenoidal and irrotational bases from the hermite bicubic interpolated stream function. Numerical tests are performed on the lid-driven cavity flow, and results are compared with those from hermite serendipity cubics and a stabilized finite element method by Illinca et al[7].

  • PDF

Elasticity solution and free vibrations analysis of laminated anisotropic cylindrical shells

  • Shakeri, M.;Eslami, M.R.;Yas, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.181-202
    • /
    • 1999
  • Dynamic response of axisymmetric arbitrary laminated composite cylindrical shell of finite length, using three-dimensional elasticity equations are studied. The shell is simply supported at both ends. The highly coupled partial differential equations are reduced to ordinary differential equations (ODE) with variable coefficients by means of trigonometric function expansion in axial direction. For cylindrical shell under dynamic load, the resulting differential equations are solved by Galerkin finite element method, In this solution, the continuity conditions between any two layer is satisfied. It is found that the difference between elasticity solution (ES) and higher order shear deformation theory (HSD) become higher for a symmetric laminations than their unsymmetric counterpart. That is due to the effect of bending-streching coupling. It is also found that due to the discontinuity of inplane stresses at the interface of the laminate, the slope of transverse normal and shear stresses aren't continuous across the interface. For free vibration analysis, through dividing each layer into thin laminas, the variable coefficients in ODE become constants and the resulting equations can be solved exactly. It is shown that the natural frequency of symmetric angle-ply are generally higher than their antisymmetric counterpart. Also the results are in good agreement with similar results found in literatures.

NUMERICAL ANALYSIS ON A SPHERICALLY SYMMETRIC UNDERWATER EXPLOSION USING THE ALE GODUNOV SCHEME FOR TWO-PHASE FLOW (이상유동에 대한 ALE Godunov법을 이용한 구대칭 수중폭발 해석)

  • Shin S.;Kim I.C.;Kim Y.J.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.29-35
    • /
    • 2006
  • A code is developed to analyze a spherically symmetric underwater explosion. The arbitrary Lagrangian-Eulerian(ALE) Godunov scheme for two-phase flow is used to calculate numerical fluxes through moving control surfaces. For detonation gas of TNT and liquid water, the Jones-Wilkins-Lee(JWL) equation of states and the isentropic Tait relation are used respectively. It is suggested to use the Godunov variable to estimate the velocity of a material interface. The code is validated through comparisons with other results on the gas-water shock tube problem. It is shown that the code can handle generation of discontinuity and recovering of continuity in the normal velocity near the material interface during shock waves interact with the material interface. The developed code is applied to analyze a spherically symmetric underwater explosion. Repeated transmissions of shock waves are clearly captured. The calculated period and maximum radius of detonation gas bubble show good agreements with experimental and other numerical results.

A Study on the Feed Rate Optimization of a Ball Screw Driven Machine Tool Feed Slide for Minimum Vibrations

  • Choi, Yong-Hyu;Choi, Hoon-Ki;Kim, Soo-Tae;Choi, Eung-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1028-1032
    • /
    • 2004
  • In order to prevent machine tool feed slide system from transient vibrations during operations, machine tool designers usually adopt some typical design solutions; box-in-box typed feed slides, optimizing moving body for minimum weight and dynamic compliance, and so on. Despite all efforts for optimizing design, a feed drive system may experience severe transient vibrations during high-speed operation if its feed rate control is unsuitable. A rough feed rate curve having discontinuity in its acceleration profile causes a serious vibration problem in the feed slides system. This paper presents a feed rate optimization of a ball screw driven machine tool feed slide system for its minimum vibration. Firstly, a ball screw feed drive system was mathematically modeled as a 6-degree-of-freedom lumped parameter system. Next, a feed rate optimization of the system was carried out for minimum vibrations. The main idea of the feed rate optimization is to find out the most appropriate smooth acceleration profile with jerk continuity. A genetic algorithm was used in this feed rate optimization

  • PDF

An Adaptive Finite Element Method for Semiconductor Device Analysis (반도체 소자 해석을 위한 적응 유한요소법)

  • 최경;경종민;한민구;함송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.4
    • /
    • pp.205-213
    • /
    • 1988
  • It has been very difficult to solve the semiconductor problems by numerical analysis techique due to the strong nonlinearity of the governing equations. Thus, we proposed a double structured adaptive refinement scheme to the finite element analysis of semiconductor devices, which guarantees a succesive convergency and gives better quality to the solutions.i.e., in the first step, the main factor of divergence in the current continuity equation is eliminated and the next, the solution quality is improved by reducing the discontinuity of current. The result of test application to the GaAs MESFET model shows that the proposed method is much dffective and efficient in the numerical analysis of semiconductor.

PMIPv6-based Mobility Management Scheme for Vehicular Communication Networks (차량통신망 지원을 위한 PMIPv6 기반 이동성 관리 기법)

  • Lim, Yu-Jin;Ahn, Sang-Hyun
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.1
    • /
    • pp.66-71
    • /
    • 2010
  • This paper proposes mobility management schemes providing Internet session continuity to moving vehicles in the V2I (Vehicle-to-Infrastructure) environment of the vehicular communication networks. Since PMIPv6 is localized mobility management protocol, PMIPv6 can not be directly applied to the vehicular communication network requiring global mobility coverage. Therefore, in this paper, we derive two scenarios of applying PMIPv6 to vehicular communication network environment and propose PMIPv6-based global mobility management schemes for those scenarios. Through simulations, we show that the proposed schemes can significantly decrease the Internet service discontinuity.

A Study on the Feed Rate Optimization of a Linear Motored Feed Drive System for Minimum Vibrations (Linear Motor 이송계의 진동 최소화를 위한 이송속도 최적화)

  • 최영휴;홍진현;최응영;김태형;최원선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.321-325
    • /
    • 2004
  • Linear motor feed drive systems have been broadly used in machine tools or precision automatic feed systems. Recently, modem machine tools require high speed and high precision feed drive system to achieve high productivity. Unfortunately, a feed drive system, even though it was optimum designed, may experience severe transient vibrations during high-speed operation if its feed rate control is unsuitable. A rough feed rate curve having discontinuity in its acceleration profile causes a serious vibration problem in the feed slides system. This paper presents a feed rate optimization of a machine tool feed slide system, which is driven by a linear motor, for its minimum vibrations. Firstly, a 4-degree-of-freedom lumped parameter model is proposed for the vibration analysis of a linear motor driven machine tool feed drive system. Next, a feed rate optimization of the feed slide is carried out for minimum vibrations. The feed rate curve optimization strategy is to find out the most appropriate acceleration profile with jerk continuity. Of course, the optimized feed rate should approximate to the desired one as possible. A genetic algorithm with variable penalty function was used in this feed rate optimization.

  • PDF