• Title/Summary/Keyword: context classification

Search Result 336, Processing Time 0.029 seconds

Characterization of Eco-Design Checklists (에코디자인 체크리스트 특성 분석)

  • Masoudi, Ali;You, Hee-Cheon;Suh, Suk-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.964-970
    • /
    • 2012
  • Various eco-design tools have been developed which can be classified into quantitative, semi-quantitative, and qualitative tools. Practitioners are reluctant to utilize quantitative tools in light of their time-demanding nature. Among the qualitative tools, checklists are simple tools that allow a quick and effective evaluation and consideration of environmental impacts over the entire life cycle of a product. A profound and better understanding of eco-design checklists is needed so that practitioners can apply them appropriately to their product development context. Various types of eco-design checklists are analyzed in the present study based on their attributes and classified in a structured way for their efficient utilization in product development contexts.

Crowdsourced Urban Sensing: Urban Travel Behavior Using Mobile Based Sensing

  • Shin, Dongyoun
    • Architectural research
    • /
    • v.20 no.4
    • /
    • pp.109-120
    • /
    • 2018
  • In the context of ever-faster urbanization, cities are becoming increasingly complex, and data collection to understand such complex relationships is becoming a very important factor. This paper focuses on the lighter weight of the method of collecting urban data, and studied how to use such complementary data collection using crowdsourcing. Especially, the method of converting mobile acceleration sensor information to urban trip information by combining with locational information was experimented. Using the parameters for transportation type classification obtained from the research, information was obtained and verified in Singapore and Zurich. The result of this study is thought to be a good example of how to combine raw data into meaningful behavior information.

Design of a Sound Classification System for Context-Aware Mobile Computing (상황 인식 모바일 컴퓨팅을 위한 사운드 분류 시스템 설계)

  • Kim, Joo-Hee;Lee, Seok-Jun;Kim, In-Cheol
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1305-1308
    • /
    • 2013
  • 본 논문에서는 스마트폰 사용자의 실시간 상황 인식을 위한 효과적인 사운드 분류 시스템을 제안한다. 이 시스템에서는 PCM 형태의 사운드 입력 데이터에 대한 전처리를 통해 고요한 사운드와 화이트 노이즈를 학습 및 분류 단계 이전에 미리 여과함으로써, 계산 자원의 불필요한 소모를 막을 수 있다. 또한 에너지 레벨이 낮아 신호의 패턴을 파악하기 어려운 사운드 데이터는 증폭함으로써, 이들에 대한 분류 성능을 향상시킬 수 있다. 또, 제안하는 사운드 분류 시스템에서는 HMM 분류 모델의 효율적인 학습과 적용을 위해 k-평균 군집화를 이용하여 특징 벡터들에 대한 차원 축소와 이산화를 수행하고, 그 결과를 모아 일정한 길이의 시계열 데이터를 구성하였다. 대학 연구동내 다양한 일상생활 상황들에서 수집한 8가지 유형의 사운드 데이터 집합을 이용하여 성능 분석 실험을 수행하였고, 이를 통해 본 논문에서 제안하는 사운드 분류 시스템의 높은 성능을 확인할 수 있었다.

Attentive Transfer Learning via Self-supervised Learning for Cervical Dysplasia Diagnosis

  • Chae, Jinyeong;Zimmermann, Roger;Kim, Dongho;Kim, Jihie
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.453-461
    • /
    • 2021
  • Many deep learning approaches have been studied for image classification in computer vision. However, there are not enough data to generate accurate models in medical fields, and many datasets are not annotated. This study presents a new method that can use both unlabeled and labeled data. The proposed method is applied to classify cervix images into normal versus cancerous, and we demonstrate the results. First, we use a patch self-supervised learning for training the global context of the image using an unlabeled image dataset. Second, we generate a classifier model by using the transferred knowledge from self-supervised learning. We also apply attention learning to capture the local features of the image. The combined method provides better performance than state-of-the-art approaches in accuracy and sensitivity.

Cyberbullying Detection by Sentiment Analysis of Tweets' Contents Written in Arabic in Saudi Arabia Society

  • Almutairi, Amjad Rasmi;Al-Hagery, Muhammad Abdullah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.112-119
    • /
    • 2021
  • Social media has become a global means of communication in people's lives. Most people are using Twitter for communication purposes and its inappropriate use, which has negative effects on people's lives. One of the widely common misuses of Twitter is cyberbullying. As the resources of dialectal Arabic are rare, so for cyberbullying most people are using dialectal Arabic. For this reason, the ultimate goal of this study is to detect and classify cyberbullying on Twitter in the Arabic context in Saudi Arabia. To help in the detection and classification of tweets, Pointwise Mutual Information (PMI) to generate a lexicon, and Support Vector Machine (SVM) algorithms are used. The evaluation is performed on both methods in terms of the F1-score. However, the F1-score after applying the PMI is 50%, while after the SVM application on the resampling data it is 82%. The analysis of the results shows that the SVM algorithm outperforms better.

Hybrid Feature Selection Method Based on Genetic Algorithm for the Diagnosis of Coronary Heart Disease

  • Wiharto, Wiharto;Suryani, Esti;Setyawan, Sigit;Putra, Bintang PE
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.1
    • /
    • pp.31-40
    • /
    • 2022
  • Coronary heart disease (CHD) is a comorbidity of COVID-19; therefore, routine early diagnosis is crucial. A large number of examination attributes in the context of diagnosing CHD is a distinct obstacle during the pandemic when the number of health service users is significant. The development of a precise machine learning model for diagnosis with a minimum number of examination attributes can allow examinations and healthcare actions to be undertaken quickly. This study proposes a CHD diagnosis model based on feature selection, data balancing, and ensemble-based classification methods. In the feature selection stage, a hybrid SVM-GA combined with fast correlation-based filter (FCBF) is used. The proposed system achieved an accuracy of 94.60% and area under the curve (AUC) of 97.5% when tested on the z-Alizadeh Sani dataset and used only 8 of 54 inspection attributes. In terms of performance, the proposed model can be placed in the very good category.

An Efficient Conceptual Clustering Scheme (효율적인 개념 클러스터링 기법)

  • Yang, Gi-Chul
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.4
    • /
    • pp.349-354
    • /
    • 2020
  • This paper, firstly, propose a new Clustering scheme Based on Conceptual graphs (CBC) that can describe objects freely and can perform clustering efficiently. The conceptual clustering is one of machine learning technique. The similarity among the objects in conceptual clustering are decided on the bases of concept membership, unlike the general clustering scheme which decide the similarity without considering the context or environment of the objects. A new conceptual clustering scheme, CBC, which can perform efficient conceptual clustering by describing various objects freely with conceptual graphs is introduced in this paper.

Estimating the AUC of the MROC curve in the presence of measurement errors

  • G, Siva;R, Vishnu Vardhan;Kamath, Asha
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.5
    • /
    • pp.533-545
    • /
    • 2022
  • Collection of data on several variables, especially in the field of medicine, results in the problem of measurement errors. The presence of such measurement errors may influence the outcomes or estimates of the parameter in the model. In classification scenario, the presence of measurement errors will affect the intrinsic cum summary measures of Receiver Operating Characteristic (ROC) curve. In the context of ROC curve, only a few researchers have attempted to study the problem of measurement errors in estimating the area under their respective ROC curves in the framework of univariate setup. In this paper, we work on the estimation of area under the multivariate ROC curve in the presence of measurement errors. The proposed work is supported with a real dataset and simulation studies. Results show that the proposed bias-corrected estimator helps in correcting the AUC with minimum bias and minimum mean square error.

Rhetorical Sentence Classification Using Context Information (문맥 정보를 이용한 논문 문장 수사학적 분류)

  • Seong, Su-Jin;Kim, Seong-Chan;Lee, Seung-Woo;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.316-319
    • /
    • 2021
  • 우리는 과학기술 분야 논문 내 문장에 대해 논문의 의미 구조를 반영하는 수사학적 태그를 자동으로 부착하기 위한 분류 모델을 구축한다. 문장의 태그가 이전 문장의 태그와 상관관계를 갖는 특징을 반영하여 이전 문장을 추가 자질로 사용한다. 이전 문장을 추가 자질로 모델에 입력하기 위해 5 가지 결합 방법에 대한 실험을 진행한다. 실험 결과 각 문장에 대해 독립된 인코더를 사용하고 인코더의 결과 벡터를 concatenation 연산으로 조합하여 분류를 수행하는 것이 가장 높은 성능을 보이는 것을 확인하였다.

  • PDF

Incorrect query classification via context-query comparison (본문-질의 비교를 활용한 오답 질의 분류)

  • Han, Sangdo;Yu, Hwanjo;Lee, Gary Geunbae;Myaeng, Sung-Hyon
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.440-442
    • /
    • 2019
  • 본 논문은 딥 러닝 기반의 독해 기술이 풀지 못하는 문제를 분류해내는 기술에 관한 것이다. 해당 연구에서는 독해 데이터 및 시스템 결과 분석을 통해 시스템이 풀지 못하는 문제들의 특징을 도출해내고, 이에 알맞은 전략들을 시도해 보았다. 분석 결과에 따른 시도들은 각 목적에 부합하는 결과를 나타냈으며, 특히 독해 기술의 특징에 기반한 방법론이 효과적이었다. 본 논문에서 제안하는 방법은 본문과 질의 간 유사도 행렬을 활용하는 것으로, 기존의 독해 기술이 본문과 질의의 유사도를 활용하여 정답을 내는 것에 영감을 얻었다.

  • PDF