• Title/Summary/Keyword: contention slot

Search Result 53, Processing Time 0.019 seconds

An Improved Contention Access Mechanism for FPRP to Increase Throughput

  • Yang, Qi;Zhuang, Yuxiang;Shi, Jianghong
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.58-68
    • /
    • 2013
  • Five-phase reservation protocol (FPRP) is a contention-based media access control protocol for wireless ad hoc networks. FPRP uses a five-phase reservation process to establish slot assignments based on time division multiple access. It allows a node to reserve only one slot in an information frame. Once a node has reserved a slot, it will cease contending for other slots. As a result, there may be less contending nodes in the remaining slots, so the time slots in an information frame are not fully used by FPRP. To improve time slot utilization, this paper proposes an improved pseudo-Bayesian algorithm, based on which an improved contention access mechanism for FPRP is proposed, in which nodes are allowed to contend for more than one slot in a reservation frame according to a certain probability/priority. Simulation results indicate that the proposed mechanism performs better than FPRP in time slot utilization and hence the network throughput under various scenarios.

Cyclic Contention Free Access Scheme for IEEE802.15.4 WPAN (IEEE802.15.4 WPAN에서의 Cyclic Contention Free Access 기법)

  • Kwak, Woon-Geun;Lee, Jai-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7B
    • /
    • pp.455-462
    • /
    • 2007
  • The GTS(Guaranteed Time Slot) of IEEE802.15.4 standard, which is the contention free access mechanism, has some problems such as the limited number of deployed devices, the low channel utilization and the service confirm delay. The proposed Cyclic-CFA(Contention Free Access) scheme is a modified polling algorithm that allows a large number of devices to be served Contention Free Access without polling packets. The Cyclic-CFA scheme improves the channel utilization dramatically and also reduces service delay time.

Slot-Time Optimization Scheme for Underwater Acoustic Sensor Networks (수중음향 센서네트워크를 위한 슬롯시간 최적화 기법)

  • Lee, Dongwon;Kim, Sunmyeng;Lee, Hae-Yeoun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.4
    • /
    • pp.351-361
    • /
    • 2014
  • Compared to a terrestrial communication, the high BER(Bit Error Ratio) and low channel bandwidth are the major factor of throughput degradation due to characteristics of underwater channel. Therefore, a MAC protocol must be designed to solve this problem in UWASNs(Underwater Acoustic Sensor Networks). MAC protocols for UWASNs can be classified into two major types according to the contention scheme(Contention-free scheme and Contention-based scheme). In large scale of sensor networks, a Contention-based scheme is commonly used due to time-synchronize problem of Contention-free scheme. In the contention-based scheme, Each node contends with neighbor nodes to access network channel by using Back-off algorithm. But a Slot-Time of Back-off algorithm has long delay times which are cause of decrease network throughput. In this paper, we propose a new scheme to solve this problem. The proposed scheme uses variable Slot-Time instead of fixed Slot-Time. Each node measures propagation delay from neighbors which are used by Slot-time. Therefore, Slot-Times of each node are optimized by considering node deployment. Consequently, the wasted-time for Back-off is reduced and network throughput is improved. A new mac protocol performance in throughput and delay is assessed through NS3 and compared with existing MAC protocol(MACA-U). Finally, it was proved that the MAC protocol using the proposed scheme has better performance than existing MAC protocol as a result of comparison.

An Adaptive GTS Allocation Scheme to Increase Bandwidth Utilization in IEEE 802.15.4 (IEEE 802.15.4에서 대역폭 사용 효율 향상을 위한 적응적 GTS 할당 기법)

  • Park, Hee-Dong;Kim, Do-Hyeon;Park, Hyeon
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.2
    • /
    • pp.219-227
    • /
    • 2011
  • The superframe structure of IEEE 802.15.4, an international standard for low rate WPAN, is composed of CAP(Contention access period) and CFP(Contention free period). CAP is the contention-based access period, while CFP is contention-free access period for supporting QoS by allocating fixed bandwidth. The standard can support QoS for only a few devices, because the maximum number of GTSs is 7. Furthermore, as the value of BO (Beacon order) or SO (Superframe order) increases, the size of a time slot increases. This makes it difficult to precisely allocate bandwidth for any device, because the bandwidth is allocated by the unit of GTS. The proposed scheme of this paper can reduce the waste of BW in CFP by adaptively reducing the size of a time slot in CFP as the value of BO or SO increases and increase the number of GTSs to 127 by modifying the standard. The performance analysis shows that the proposed scheme can dramatically increase the bandwidth utilization during the CFP when comparing with IEEE 802.15.4.

Performance evaluation of BWA protocol according to uplink frame size and contention slot (상향링크의 프레임 크기와 경쟁슬롯에 따른 BWA 프로토콜의 성능평가)

  • Oh Sung-Min;Kim Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11B
    • /
    • pp.967-973
    • /
    • 2004
  • DOCSIS and IEEE 802.16 define the usage and element of a MAP which is uplink control message. Standards does not include the details of MAP size and the number of contention slots affecting the performance of MAC protocols for DOCSIS and IEEE 802.16. In this paper, we analyzed the performance of throughput and access delay according to the MAP size and contention slot size. Based on the analytical results, we found the optimal MAP size and the number of contention slots. We found that the protocol shows best performance when the MAP size is 2msec and the number of contention slots is 8. The simulation results can apply to the network system parameters. The simulator can be used to optimize the system parameters in cable network, BWA and WiBro.

CDASA-CSMA/CA: Contention Differentiated Adaptive Slot Allocation CSMA-CA for Heterogeneous Data in Wireless Body Area Networks

  • Ullah, Fasee;Abdullah, Abdul Hanan;Abdul-Salaam, Gaddafi;Arshad, Marina Md;Masud, Farhan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5835-5854
    • /
    • 2017
  • The implementation of IEEE 802.15.6 in Wireless Body Area Network (WBAN) is contention based. Meanwhile, IEEE 802.15.4 MAC provides limited 16 channels in the Superframe structure, making it unfit for N heterogeneous nature of patient's data. Also, the Beacon-enabled Carrier-Sense Multiple Access/Collision-Avoidance (CSMA/CA) scheduling access scheme in WBAN, allocates Contention-free Period (CAP) channels to emergency and non-emergency Biomedical Sensors (BMSs) using contention mechanism, increasing repetition in rounds. This reduces performance of the MAC protocol causing higher data collisions and delay, low data reliability, BMSs packet retransmissions and increased energy consumption. Moreover, it has no traffic differentiation method. This paper proposes a Low-delay Traffic-Aware Medium Access Control (LTA-MAC) protocol to provide sufficient channels with a higher bandwidth, and allocates them individually to non-emergency and emergency data. Also, a Contention Differentiated Adaptive Slot Allocation CSMA-CA (CDASA-CSMA/CA) for scheduling access scheme is proposed to reduce repetition in rounds, and assists in channels allocation to BMSs. Furthermore, an On-demand (OD) slot in the LTA-MAC to resolve the patient's data drops in the CSMA/CA scheme due to exceeding of threshold values in contentions is introduced. Simulation results demonstrate advantages of the proposed schemes over the IEEE 802.15.4 MAC and CSMA/CA scheme in terms of success rate, packet delivery delay, and energy consumption.

Automatic Adaptive Algorithm to Optimize OFDMA Initial Ranging Contention Process (OFDMA 초기 레인징 경쟁 프로세스의 최적화를 위한 자동적응형 알고리즘)

  • Kim, Ha-Jeong;Jang, Bong-Seog;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7A
    • /
    • pp.540-547
    • /
    • 2009
  • In this paper, we work for the efficient use of the initial ranging contention slot in OFDMA based wireless mobile networks. Specially, the collision reduction method using an automatic adaptive optimal algorithm is studied for initial ranging contention slot used at initial connection of the mobile terminals. As a result, we propose the algorithm that achieves the collision minimization and the auto-dynamic slot arrangement of the initial ranging slots. To evaluate the proposed algorithm, we compare the simulation results of IEEE802.16e fixed initial ranging slot allocation method versus the proposed algorithm. The simulator is developed based on the IEEE802.16e standard MAC frame structure and processing procedures. As the simulation results, we can expect the proposed algorithm can be applied for the unmanned coastal base station because the proposed algorithm has the effect of minimizing administration cost for the base station.

Prioritized Channel Contention Access Method for TDMA based MAC Protocol in Wireless Mesh Network (WMN에서 TDMA 기반 MAC Protocol을 위한 우선순위 채널 경쟁 접근 방법)

  • Yun, Sang-Man;Lee, Soon-Sik;Lee, Sang-Wook;Jeon, Seong-Geun;Lee, Woo-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1883-1890
    • /
    • 2009
  • Existing MAC protocol can not show good performance in WMN environment. New MAC protocols is proposed because of Mobile Point's mobility, entire distributed environment, heavy traffic problems. This thesis proposes new channel contention method fur Mesh DCF. Mesh DCF uses ACH phase in TDMA frame to perform selection and elimination. Prioritized phases's count m and Fair Elimination phases's count n is determine contention level and make string probability to only one win the contention. Contention Number group's count K to determine the contention level in Fair Elimination Phase gives Fairness but make low probability to only one win the contention. It is sure that enough size of n and K can improve entire performance as result.

A Medium Access Control Protocol for rt- VBR Traffic in Wireless ATM Networks

  • Lim, In-Taek
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.29-34
    • /
    • 2007
  • This paper proposes a MAC protocol for real-time VBR (rt-VBR) services in wireless ATM networks. The proposed protocol is characterized by a contention-based mechanism of the reservation request, a contention-free polling scheme for transferring the dynamic parameters, and a priority scheme of the slot allocation. The design objective of the proposed protocol is to guarantee the real-time constraint of rt-VBR traffic. The scheduling algorithm uses a priority scheme based on the maximum cell transfer delay parameter. The wireless terminal establishes an rt-VBR connection to the base station with a contention-based scheme. The base station scheduler allocates a dynamic parameter minislot to the wireless terminal for transferring the residual lifetime and the number of requesting slots as the dynamic parameters. Based on the received dynamic parameters, the scheduler allocates the uplink slots to the wireless terminal with the most stringent delay requirement. The simulation results show that the proposed protocol can guarantee the delay constraint of rt-VBR services along with its cell loss rate significantly reduced.

Performance Analysis of Opportunistic Spectrum Access Protocol for Multi-Channel Cognitive Radio Networks

  • Kim, Kyung Jae;Kwak, Kyung Sup;Choi, Bong Dae
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.77-86
    • /
    • 2013
  • Cognitive radio (CR) has emerged as one of effective methods to enhance the utilization of existing radio spectrum. Main principle of CR is that secondary users (SUs) are allowed to use the spectrum unused by primary users (PUs) without interfering PU's transmissions. In this paper, PUs operate on a slot-by-slot basis and SUs try to exploit the slots unused by PUs. We propose OSA protocols in the single channel and we propose an opportunistic spectrum access (OSA) protocols in the multi-channel cognitive radio networks with one control channel and several licensed channels where a slot is divided into contention phase and transmission phase. A slot is divided into reporting phase, contention phase and transmission phase. The reporting phase plays a role of finding idle channels unused by PUs and the contention phase plays a role of selecting a SU who will send packets in the data transmission phase. One SU is selected by carrier sense multiple access / collision avoidance (CSMA/CA) with request to send / clear to send (RTS/CTS) mechanism on control channel and the SU is allowed to occupy all remaining part of all idle channels during the current slot. For mathematical analysis, first we deal with the single-channel case and we model the proposed OSA media access control (MAC) protocol by three-dimensional discrete time Markov chain (DTMC) whose one-step transition probability matrix has a special structure so as to apply the censored Markov chain method to obtain the steady state distribution.We obtain the throughput and the distribution of access delay. Next we deal with the multi-channel case and obtain the throughput and the distribution of access delay by using results of single-channel case. In numerical results, our mathematical analysis is verified by simulations and we give numerical results on throughput and access delay of the proposed MAC protocol. Finally, we find the maximum allowable number of SUs satisfying the requirements on throughput and access delay.