• Title/Summary/Keyword: contention

Search Result 504, Processing Time 0.024 seconds

The Analysis of Priority Output Queuing Model by Short Bus Contention Method (Short Bus contention 방식의 Priority Output Queuing Model의 분석)

  • Jeong, Yong-Ju
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.2
    • /
    • pp.459-466
    • /
    • 1999
  • I broadband ISDN every packet will show different result if it would be processed according to its usage by the server. That is, normal data won't show big differences if they would be processed at normal speed. But it will improve the quality of service to process some kinds of data - for example real time video or voice type data or some data for a bid to by something through the internet - more fast than the normal type data. solution for this problem was suggested - priority packets. But the analyses of them are under way. Son in this paper a switching system for an output queuing model in a single server was assumed and some packets were given priorities and analysed. And correlation, simulating real life situation, was given too. These packets were analysed through three cases, first packets having no correlation, second packets having only correlation and finally packets having priority three cases, first packets having no correlation, second packets having only correlation and finally packets having priority and correlation. The result showed that correlation doesn't affect the mean delay time and the high priority packets have improved mean delay time regardless of the arrival rate. Those packets were assumed to be fixed-sized like ATM fixed-sized cell and the contention strategy was assumed to be short bus contention method for the output queue, and the mean delay length and the maximum 버퍼 length not to lose any packets were analysed.

  • PDF

DVFS based Memory-Contention Aware Scheduling Method for Multi-threaded Workloads (멀티쓰레드 워크로드를 위한 DVFS 기반 메모리 경합 인지 스케줄링 기법)

  • Nam, Yoonsung;Kang, Minkyu;Yeom, HeonYoung;Eom, Hyeonsang
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.1
    • /
    • pp.10-16
    • /
    • 2018
  • The task of consolidating server workloads is critical for the efficiency of a datacenter in terms of reducing costs. However, as a greater number of workloads are consolidated in a single server, the performance of workloads might be degraded due to their contention to the limited shared resources. To reduce the performance degradation, scheduling for mitigating the contention of shared resources is necessary. In this paper, we present the Dynamic Voltage Frequency Scaling (DVFS) based memory-contention aware scheduling method for multi-threaded workloads. The proposed method uses two approaches: running memory-intensive threads on the limited cores to avoid concurrent memory accesses, and reducing the frequencies of the cores that run memory-intensive threads. With the proposed algorithm, we increased performance by 43% and reduced power consumption by 38% compared to the Completely Fair Scheduler(CFS), the default scheduler of Linux.

Binary Negative-Exponential Backoff Algorithm to Enhance The Performance of IEEE 802.11 WLAN (IEEE 802.11 무선랜의 성능 향상을 위한 Binary Negative-Exponential Backoff 알고리즘)

  • Ki, Hyung-Joo;Choi, Seung-Hyuk;Chung, Min-Young;Lee, Tae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12A
    • /
    • pp.1229-1237
    • /
    • 2006
  • IEEE 802.11 has employed distributed coordination function (DCF) adopting carrier sense multiple access with collision avoidance (CSMA/CA). To effectively resolve collisions, DCF uses binary exponential backoff (BEB) algorithm with three parameters, i.e., backoff stage, backoff counter and contention window. If a collision occurs, stations involving in the collision increase their backoff stages by one and double their contention window sizes. However, DCF with BEB wastes wireless resource when there are many contending stations. Therefore, in this paper, to enhance the performance of wireless LAN, we propose binary negative-exponential backoff (BNEB) algorithm which maintains a maximum contention window size during collisions and reduces a contention window size to half after successful transmission of a frame without retransmissions. For IEEE 802.11, 802.11a and 802.11b standards, we also compare the performance of DCF with BEB to that with BNEB.

Partitioned Contention Access Mechanism to Enhance the Performance of IEEE 802.15.4 MAC Layer (IEEE 802.15.4 MAC 계층의 성능 향상을 위한 분할 경합 접근 방식)

  • Bae, Sueng-Jae;Ki, Hyung-Joo;Lee, Tae-Jin;Chung, Min-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.4
    • /
    • pp.436-440
    • /
    • 2008
  • In IEEE 802.15.4 beacon-enabled mode, performance decreases as the number of devices competing in the contention access period(CAP) increases. In this letter, we propose partitioned contention access mechanism(PCAM) to compensate performance degradation. In PCAM, the PAN coordinator divides CAP into two sub-periods and activity of devices is delimited in their assigned sub-periods. Since PCAM reduces the number of devices which compete at the same time by half, collision probability between transmitted frames can be reduced. In addition, devices can save their power consumption because PCAM shorten the duration that devices stay in active state into half. We perform simulations to compare the performance of PCAM with that of the IEEE 802.15.4 standard. From the result, PCAM yields better performance than IEEE 802.15.4 standard.

Reliable Contention-Based Forwarding Approach (Contention-Based Forwarding의 신뢰성 향상 방안)

  • Sung, Yoon-Young;Jo, Sun-Mi;Lee, Mee-Jeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8B
    • /
    • pp.695-705
    • /
    • 2012
  • Due to recent advances in wireless devices and the automotive industry, Vehicular Ad hoc Networks (VANETs) have emerged as a very promising technology for transferring data collected on the road by moving cars. The delivered data may contain emergency information which affects the safety of passengers and drivers as well as the traffic congestion, and the routing protocols have thus a significant impact on the performance of VANETs. In this paper, we study the impact of movement direction of the participating cars which forward data packets on the performance of data delivery and present a new approach which extends the contention-based forwarding (CBF). The proposed reliable CBF (R-CBF) increases the reliability of data deliver on the traffic lights installed roads and reduces the overall propagation delay without routing loops or interruption of data forwarding that may be caused by changes of relative positions of involving cars in routing. Simulation demonstrates that the R-CBF diminishes propagation delay by 38% in comparison to G-SRMB which forwards data to moving cars in the backward direction and eliminates unnecessary retransmissions.

Routing considering Channel Contention in Wireless Communication Networks with Multiple Radios and Multiple Channels (다수 라디오와 채널을 갖는 무선통신망에서 채널경쟁을 고려한 라우팅)

  • Ko, Sung-Won;Kang, Min-Su;Kang, Nam-Hi;Kim, Young-Han
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.5
    • /
    • pp.7-15
    • /
    • 2007
  • In wireless communication networks, single-radio single-channel architecture degrades throughput and end-to-end delay due to half-duplex transmission of wireless node and route intra interference. Also, In contention-based MAC (Medium Access Control) architecture, channel contention reduces throughput and packet collision enlarges end-to-end delay. In this paper, we use multi-radio multi-channel architecture which will make wireless node to operate in full duplex mode, and exclude route intra interference. Based on this architecture, we propose a new link metric, ccf which reflects the characteristics of a contention-based wireless link, and propose a routing path metric MCCR considering channel switching delay and route intra interference. MCCR is compared with MCR by simulation, the performance of a route established by MCCR outperforms the performance of a route by MCR in terms of throughput and end-to-end delay.

Load-based Dynamic Backoff Algorithm in Contention-based Wireless Shared Medium (단일 경쟁 매체에서의 새로운 로드 기반 동적 매체 접속 제어 백오프 알고리즘)

  • Seo Chang-Keun;Wang Weidong;Yoo Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6B
    • /
    • pp.406-415
    • /
    • 2005
  • The standards which use shared medium like IEEE 802.11 wireless LAN have transmission opportunity by contention in contention period. If there are collisions in contention period, medium access control protocol may solve problem by using backoff algorithm. Backoff algorithm is important part in medium access control, but legacy backoff method which is used under IEEE 802.11 standards is not adjusted when load is heavy because of increasing collisions. In this paper, we propose a new load-based dynamic backoff algorithm in contention-based wireless shared medium to improve throughput of medium and to reduce the number of collisions. Proposed backoff algorithm can increase the network utilization about $20\%$ higher than that of binary exponential backoff algorithm.

Adaptive Contention Window Mechanism for Enhancing Throughput in HomePlug AV Networks (HomePlug AV 네트워크에서의 성능 향상을 위한 적응적 Contention Window 조절 방식)

  • Yoon, Sung-Guk;Yun, Jeong-Kyun;Kim, Byung-Seung;Bahk, Sae-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5B
    • /
    • pp.318-325
    • /
    • 2008
  • HomePlug AV(HPAV) is the standard for distribution of Audio/video content as well as data within the home by using the power line. It uses a hybrid access mechanism that combines TDMA with CSMA/CA for MAC technology. The CSMA/CA protocol in HPAV has two main control blobs that can be used for access control: contention window(CW) size and deferral counter(DC). In this paper, we extensively investigate the impacts of CW and DC on performance through simulations, and propose an adaptive mechanism that adjusts the CW size to enhance the throughput in HPAV MAC. We find that the CW size is more influential on performance than the DC. Therefore, to make controlling the network easier, our proposal uses a default value of DC and adjusts the CW size. Our scheme simply increases or decreases the CW size if the network is too busy or too idle, respectively, We compare the performance of our proposal with those of the standard and other competitive schemes in terms of throughput and fairness. Our simulation and analysis results show that our adaptive CW mechanism performs very well under various scenarios.

An Energy and Delay Efficient Hybrid MAC Protocol for Multi-Hop Wireless Sensor Networks (멀티 홉 무선센서네트워크에서 에너지와 지연에 효율적인 하이브리드 MAC 프로토콜)

  • Jeon, Jun-Heon;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.471-476
    • /
    • 2015
  • In this paper, we propose an energy efficient hybrid MAC protocol for multi-hop wireless sensor networks. The proposed MAC protocol used a hybrid mechanism, in which contention-based MAC protocol and contention free MAC protocol are combined. The sensor nodes located far from the sink node usually send few data packet since they try to send measured data by themselves. So contention-based MAC protocol is useful among them. But other nodes located near sink node usually have lots of data packets since they plays as a relay node. Contention-based MAC protocol among them is not suitable. Using contention-based MAC protocol in heavy data traffic environment, packet collisions and transmission delay may increase. In this paper, slot assignment between sender nodes by sink node is used. The proposed mechanism is efficient in energy and latency. Results showed that our MAC protocol outperformed other protocol in terms of data packet delivery delay and energy consumption.

Decision of Maximum Congestion Window Size for TCP Performance Improvement by Bandwidth and RTT Measurement in Wireless Multi-Hop Networks

  • Huh, In;Lee, Jae-Yong;Kim, Byung-Chul
    • Journal of Information Processing Systems
    • /
    • v.2 no.1
    • /
    • pp.34-38
    • /
    • 2006
  • In the wireless network, TCP performs poorly because it was originally designed for wired networks and does not take into consideration wireless characteristics such as mobility, high-loss probability, and hidden-terminal problems. In particular, in the wireless multi-hop networks, a large congestion window increases the probability of contention and packet losses, and TCP performance is degraded severely as a result. So, it is necessary to limit the TCP congestion window size in order keep the probability of contention loss in the system to a minimum. In this paper, we propose a new scheme for determining the maximum congestion window size based on the measured bandwidth and Round-Trip-Time (RTT). Using ns-2 simulation, we show that the proposed scheme reduces the probability of packet contention and improves TCP performance.