• Title/Summary/Keyword: content of research

Search Result 19,514, Processing Time 0.057 seconds

Soil Classification of Paddy Soils by Soil Taxonomy (미국신분류법(美國新分類法)에 의(依)한 답토양의 분류(分類)에 관한 연구)

  • Joo, Yeong-Hee;Shin, Yong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.2
    • /
    • pp.97-104
    • /
    • 1979
  • According to Soil Taxonomy which has been developed over the past 20 years in the soil conservation service of the U. S. D. A, Soils in Korea are classified. This system is well suited for the classification of the most of soils. But paddy field soils have some difficulties in classification because Soil Taxonomy states no proposals have yet been developed for classifying artificially irrigated soils. This paper discusses some problems in the application of Taxonomy and suggestes the classification of paddy field soils in Korea. Following is the summary of the paper. 1. Anthro aquic, Aquic Udipsamments : The top soils of these soils are saturated with irrigated water at some time of year and have mottles of low chroma(2 or less) more than 50cm of the soil surface. (Ex. Sadu, Geumcheon series) 2. Anthroaquic Udipsamments : These sails are like Anthroaquic, Aquic Udipsamments except for the mottles of low chroma within 50cm of the soil surface. (Ex. Baegsu series) 3. Halic Psammaquents : These soils contain enough salts as distributed in the profile that they interfere with the growth of most crop plants and located on the coastal dunes. The water table fluctuates with the tides. (Ex. Nagcheon series) 4. Anthroaquic, Aquic Udifluvents : They have some mottles that have chroma of 2 or less in more than 50cm of the surface. The upper horizon is saturated with irrigated water at sometime. (Ex. Maryeong series) 5. Anthro aquic Udifluvents : These soils are saturated with irrigated water at some time of year and have mottles of low chroma(2 or less) within 50cm of the surface soils. (Ex. Haenggog series) 6. Fluventic Haplaquepts : These soils have a content of organic carbon that decreases irregularly with depth and do not have an argillic horizon in any part of the pedon. Since ground water occur on the surface or near the surface, they are dominantly gray soils in a thick mineral regolith. (Ex Baeggu, Hagseong series) 7. Fluventic Thapto-Histic Haplaquepts : These soils have a buried organic matter layer and the upper boundary is within 1m of the surface. Other properties are same as Fluventic Haplaquepts. (Ex. Gongdeog, Seotan series) 8. Fluventic Aeric Haplaquepts : These soils have a horizon that has chroma too high for Fluventic Haplaquepts. The higher chroma is thought to indicate either a shorter period of saturation of the whole soils with water or some what deeper ground water than in the Fluventic Haplaquepts. The correlation of color with soil drainage classes is imperfect. (Ex. Mangyeong, Jeonbug series) 9. Fluventic Thapto-Histic Aeric Haplaquepts : These soils are similar to Fluventic Thapto Histic Haplaquepts except for the deeper ground water. (Ex. Bongnam series) 10. Fluventic Aeric Sulfic Haplaquepts : These soils are similar to Fluventic Aeric Haplaquepts except for the yellow mottles and low pH (<4.0) in some part between 50 and 150cm of the surface. (Ex. Deunggu series) 11. Fluventic Sulfaquepts : These soils are extremely acid and toxic to most plant. Their horizons are mostly dark gray and have yellow mottles of iron sulfate with in 50cm of the soil surface. They occur mainly in coastal marshes near the mouth of rivers. (Ex. Bongrim, Haecheog series) 12. Fluventic Aeric Sulfaquepts : They have a horizon that has chroma too high for Fluventic Sulfaquepts. Other properties are same as Fluventic Sulfaquepts. (Ex. Gimhae series) 13. Anthroaquic Fluvaquentic Eutrochrepts : These soils have mottles of low chroma in more than 50cm of the surface due to irrigated water. The base saturation is 60 percent or more in some subhroizon that is between depth of 25 and 75cm below the surface. (Ex. Jangyu, Chilgog series) 14. Anthroaquic Dystric Fluventic Eutrochrepts : These soils are similar to Anthroaquic Fluvaquentic Eutrochrepts except for the low chroma within 50cm of the surface. (Ex. Weolgog, Gyeongsan series) 15. Anthroaquic Fluventic Dystrochrepts : These soils have mottles that have chroma of 2 or less within 50cm of the soil surface due to artificial irrigation. They have lower base saturation (<60 percert) in all subhorizons between depths of 25 and 75cm below the soil surface. (Ex. Gocheon, Bigog series) 16. Anthro aquic Eutrandepts : These soils are similar to Anthroaquic Dystric Fluventic Eutrochrepts except for lower bulk density in the horizon. (Ex. Daejeong series) 17. Anthroaquic Hapludalfs : These soils' have a surface that is saturated with irrigated water at some time and have chroma of 2 or less in the matrix and higher chroma of mottles within 50cm of the surface. (Ex. Hwadong, Yongsu series) 18. Anthro aquic, Aquic Hapludalfs : These soils are similar to Anthro aquic Hapludalfs except for the matrix that has chroma 2 or less and higher chroma of mottles in more than 50cm of the surface. (Ex. Geugrag, Deogpyeong se ries)

  • PDF

Studies on the Method of Ground Vegetation Establishment of Denuded Forest Land in the Mudstone Region - The Characteristics of Mudstone and Speeded-up Reforestation - (니암지대황폐림지(泥岩地帶荒廢林地)의 지피식생(地被植生) 조성방법(造成方法)에 관(關)한 연구(硏究) - 니암특성((泥岩特性)과 조기녹화(早期綠化) -)

  • Chung, In Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.19 no.1
    • /
    • pp.1-23
    • /
    • 1973
  • The results of ground vegetation experiment conducted at completely denuded forestland in the mudstone region are summerized as follows: On the reaults of soiling quantity the effect of soiling was observed where depth of soiling over 10 cm was practiced, and a plot where treated with 15cm soiling and without fertilizer showed poor growth and it was even worser than the plot where soiling was practiced only 1 cm in thikness but applied adequate amount of fertilizers. The depth of slits between 30cm and 40cm showed no significant difference in the effect. A plot where covered with vegetation bag showed somewhat better results in seed loss and early growth but no differences observed in the fall result over the none covered plot. And then, it is recommendable to have soiling over 10cm in thikness with slit of 30cm and 30cm in depth and to apply 30 gram of fertilizer (22;22:11, 50 gram) per slit. On various soiling materials trial there were no striking differences in the effect of soiling between weathered granite soil, wheathered tuffs soil and weathered mudstone soil. In the treatment with various green materials, a plot treated with straw mat showed a significant difference at 1 percent. The results show that weathered mudstone soil is effective to use as soiling materials and straw mat treatment was better. On forest fertilization trial, in the mudstone region where red and black pine trees already existing at a rate of 2,000-3,000 trees per hectare had applied 110kg of compound fertilizers (9:12:3 and 22:22:11) per hectare basis in terms of plant nutrient. As a result, the difference in effect between the compound fertilizers was not found however the leaf color and leaf length of the fertilizer added plot showed darker and longer at 30 percent over the no fertilizer received plot. Compound fertilizers, 14:37:12 and 9:12:3 were applied to alder trees at a rate of 20 gram and 40 gram per tree in terms of plant nutrient and a remarkable growth accelerantion was observed where 40 grams of plant nutrient applied. The effect difference between the compound fertilizers was not found. On investigation of tree root elongation, forty years old red pine trees showed only 15cm tap root elongation through mudstone while black pine had 23 cm tap root elongation. The total length of supporting root elongtion of red and black pines showed 20 and 13 meters, respectively. The tap roots of Black locusts were not able to elongate through mudstone, however, the supporting roots tended to develop to the underneath of pine tree where some moisture content is available. Black locusts And grown on the residual soil of mudstone normally die between 8 to 10 years. The red pine trees show flat in tree shape while black pine had triangle in the shape. With the results it can be said that in an artificial reforestation in denuded forest land of the mudstone region the adequate slit and enough amount of fertiliizer application must be provided for the succesful performance of the program. On integrated experimental results of 1972. for the establishment of ground vegetation on the completely denuded forest land in mudstone region, soiling could be effectively practiced with weathered mudstone soil and it would not specially necessiate to have either weathered granite or tuffssoil for the soiling. And the soiling depth should be more than 10 cm in thickness. Among green materials used the straw mat proved to be the most effective reatment. Three major factors which enable to establish ground vegetation by the shortest period of time: A. Physical improvement of soil is necessary to breakdown of the horizontal cracks sushas Slit, contour line plot, seeding hole and etc., and soiling with weathered mudstone soil. B. Chemical improvement of soil: is needed sufficient amount of fertilizer application 300~400kg ha, $N+P_2O_5+K_2O$), and increased production of ground covering and expedite resolution of the vegetation (ground vegetation, fallen leaves and twigs). C. Complete establishment of the basic structure for the erosion control (Prevention of surface soil erosion)

  • PDF

Occurrence and Chemical Composition of Ti-bearing Minerals from Samgwang Au-ag Deposit, Republic of Korea (삼광 금-은 광상에서 산출되는 함 티타늄 광물들의 산상 및 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.195-214
    • /
    • 2020
  • The Samgwang Au-Ag deposit has been one of the largest deposits in Korea. The deposit consists of eight lens-shaped quartz veins which filled fractures along fault zones in Precambrian metasedimentary rock, which feature suggest that it is an orogenic-type deposit. The Ti-bearing minerals occur in wallrock (titanite, ilmenite and rutile) and laminated quartz vein (rutile). They occur minerals including biotite, muscovite, chlorite, white mica, monazite, zircon, apatite in wallrock and white mica, chlorite, arsenopyrite in laminated quartz vein. Chemical composition of titanite has maximum vaules of 3.94 wt.% (Al2O3), 0.49 wt.% (FeO), 0.52 wt.% (Nb2O5), 0.46 wt.% (Y2O3) and 0.43 wt.% (V2O5). Titanite with 0.06~0.14 (Fe/Al ratio) and 0.06~0.15 (XAl (=Al/Al+Fe3++Ti)) corresponds with metamorphic origin and low-Al variety. Chemical composition of ilmenite has maximum values of 0.07 wt.% (ZrO2), 0.12 wt.% (HfO2), 0.26 wt.% (Nb2O5), 0.04 wt.% (Sb2O5), 0.13 wt.% (Ta2O5), 2.62 wt.% (As2O5), 0.29 wt.% (V2O5), 0.12 wt.% (Al2O3) and 1.59 wt.% (ZnO). Chemical composition of rutile in wallrock and laminated quartz vein has maximum values of 0.35 wt.%, 0.65 wt.% (HfO2), 2.52 wt.%, 0.19 wt.% (WO3), 1.28 wt.%, 1.71 wt.% (Nb2O3), 0.03 wt.%, 0.07 wt.% (Sb2O3), 0.28 wt.%, 0.21 wt.% (As2O5), 0.68 wt.%, 0.70 wt.% (V2O3), 0.48 wt.%, 0.59 wt.% (Cr2O3), 0.70 wt.%, 1.90 wt.% (Al2O3) and 4.76 wt.%, 3.17 wt.% (FeO), respectively. Rutile in laminated quartz vein is higher contents (HfO2, Nb2O3, As2O5, Cr2O3, Al2O3 and FeO) and lower content (WO3) than rutile in wallrock. The substitutions of rutile in wallrock and laminated quatz vein are as followed : rutile in wallrock [(Fe3+, Al3+, Cr3+) + Hf4+ + (W5+, As5+, Nb5+) ⟵⟶ 2Ti4+ + V4+, 2Fe2+ + (Al3+, Cr3+) + Hf4+ + (W5+, As5+, Nb5+) ⟵⟶ 2Ti4+ + 2V4+], rutile in laminated quartz vein [(Fe3+, Al3+) + As5+ ⟵⟶ Ti4+ + V4+, (Fe3+, Al3+) + As5+ ⟵⟶ Ti4+ + Hf4+, 4(Fe3+, Al3+) ⟵⟶ Ti4+ + (W5+, Nb5+) + Cr3+], respectively. Based on these data, titanite, ilmenite and rutile in wallrock were formed by resolution and reconcentration of cations (W5+, Nb5+, As5+, Hf4+, V4+, Cr3+, Al3+, Fe3+, Fe2+) in minerals of wallrock during regional metamorphism. And then rutile in laminated quartz vein was formed by reconcentration of cations (Nb5+, As5+, Hf4+, Cr3+, Al3+, Fe3+, Fe2+) in alteration minerals (white mica, chlorite) and Ti-bearing minerals reaction between hydrothermal fluid originated during ductile shear and Ti-bearing minerals (titanite, ilmenite and rutile) in wallrock.

Studies on the Meat Production and Woolskin Processing of Sheep and Korean Native Goats for Increasing Farm Income as a Family Subsidiary Work (농가부업(農家副業)의 소득향상(所得向上)을 위한 양육생산(羊肉生産) 및 모피가공(毛皮加工)에 관(關)한 연구(硏究))

  • Kwon, Soon-Ki;Kim, Jong-Woo;Han, Sung-Wook;Lee, Kyu Seung
    • Korean Journal of Agricultural Science
    • /
    • v.5 no.2
    • /
    • pp.93-114
    • /
    • 1978
  • The purpose of the study was to find out possible ways for increasing farm income through the sheep and Korean native goats farming, and to investigate meat productivity, wool productivity; woolskin utility, physiological characteristics and correlation between economical college animal farm of the Chungnam National University and sample farms in the suburbs of Dae jeon City were selected for feeding 20 heads of Corriedale wethers and another 20 heads Korean native kids as research materials for the periods of 5th May-26th November, 1977. The data such as growth rate, carcass, viscera weight, blood picture and plamsa components, hebage intake and economic traits were obtained and analysed. The result of the study are summarized as follows: 1. Meat production and quality 1) After 196days of feeding, the body weight of sheep and Korean native goats was increased by two times of those at the beginning of the trial, i.e. 20kg and 8kg respectively. 2) There was no significance of growth rates of sheep in housing and grazing. 3) The growth rate of Korean native goats were excellent at the mountainous areas of Gong ju-Gun where infectious diseases were not found 4) Accroding to the body measurements of 18-month-old sheep, percentages of hip height, body length, rump length, chest depth, chest width, hip width, chest girth and forearm circumference to the withers height were 103,%, 104%, 33%, 44%, 31%, 23%, 135% and 15% respectively, and those of hip height, body length, chest depth and chest girth of 8-month-old native goats to the withers height were 106%, 109%, 46% and 122,% respecitively. As a result, it was found that the percentage of hip height, body length and chest depth of Korean native goats were higher than those of sheep while that of the chest girth of goats was lower. 5) In the carcass data, 47, $52{\pm}2.27%$ of carcass percentage, $34.61{\pm}1.62%$ of lean meat, $26.07{\pm}2.51%$ of viscera, $9.75{\pm}1.4%$ of bone, and $20.95%{\pm}2.14%$ of woolskin for sheep, and $45.58{\pm}5.63%$ of carcass percentage, $27.62{\p}3.81%$ of meat, $34.86{\pm}4.16%$ of viscera, $11.66{\pm}1.83%$ of bone, $3.63{\pm}1.61%$ of skull and $9.26{\pm}2.41%$ of woolskin for native goats were obtained. 6) The contents of moisture, crude protein, crude fat and crude ash in native goat meat were much similar in both plots of housing and grazing. It was, however, known that the contents of moisture and protein were higher in grazinrg than in housing, while fat content was lower in grazing plots. 7) The weights of visceral organs shown similar tendency for both of sheep and native goats. For the weights of liver, heart, kidney and spleen, significance was not reconized among the treatments. Those of rumen, reticulum, small and large intestine were heavier in grazing than in housing, while the amount of visceral fat was heavier in housing. 2. Wool productivity and woolskin 1) The wool production of sheep for 7 months was $3.88{\pm}1.02kg$, and wool percentage, staple length, straighten length, wool growth per day and number of crimps were $9.27{\pm}1.48%$, 8. $47{\pm}1.00cm$, $10.63{\pm}0.99cm$, $0.40{\pm}0.04cm$ and $2.78{\pm}0.40$ respecitively. 2) The tensile strength and tear strength of woolskin treated by alum tanning were highest on the skin obtained from rump, i.e. $1,351kg/mm^2$ and $2,252kg/mm^2$ respectively, and they are in order of loin and shoulder. 3. Utilization and improvement of pasture. 1) The difference of herbage intake of native goats was not recognized between grazing and tethering, but the intake in the afternoon was s lightly higher than that in the morning. However the hervage intake of sheep was superior in grazing and in the afternoon. 2) The cultivation effect was lower in the native goat plots due to their cultivation abilities, in other words, the establishment rates of pasture by hoof cultivation were 60.25% in the goat plots and 77.35% in the sheep plots. 4. Correlation among economical traits. 1) The correlation between live weight of sheep and daily gain was higher. On the other hand, the correlation between other traits was not significant except that live weight, daily gain and lean meat percentage to the length of thoracic vertebrae. The live weight of native goats and meat production were highly correlated, and high correlation was also found between weights of carcass and meat. However, negative correlation was shown between viscera weight and live weight as well as daily gain. 2) The correlatoin between fleece weight of sheep and other traits such as live weight, daily gain and fleece percentage is very high at the 1% siginficant level, and this means that rapid-growth individuals can produce much fleece. 3) The correlation between the factors such as weights of live body, lean meat and viscera of sheep and body measurements, i. e. chest girth and body length was highest, and weights, of carcass and lean meat was highly correlated to chest width and depth. It will be therefore reasonable that the meat productivity estimates will have to be made on the basis of chest girth and body length. The meat production traits of native goats were highly correlated to the most of body measurement data, and the correlation coefficient between chest girth and weights of live body, carcass, lean meat and bone percentage was very high, i. e. 0.992-0.974 in particular. The correlations of meat production traits to chest depth, forearm circumference, body length were 0.759-0.911, 0.759-0.909 and 0.708-0.872 respectively. Therefore, the meat production of native goats will have to be estimated on the basis of chest data. 5. Blood picture and plasma components. 1) The number of erythrocyte and MCHC of native goats were $12.93{\times}10^6/mm^3$ and 36.14%, and those of sheep were $10.68{\times}10^6/mm^3$ and 36.26 respectively. The values of native goats were significantly higher than those of sheep. 2) The hemoglobin concentration, PVC, MCV and MCR of native goats were 10.92 g/100ml, $23.40{\mu}^3$ and 10.94 pg, and those of sheep were 11.73 g/100ml, 36.25 ml/100ml, $33.97{\mu}^3$ and 30.2 ml/100ml 8.43 pg respectively. The values of native goats were significantly lower those of sheep. 3) The number of leukocytes of native goats was significantly higher than that of sheep, that is, $11.64{\times}10^3/mm^3$ in native goats and $9.32{\times}10^3/mm^3$ in sheep. 4) In differential count of leukocyte, neutrophil was significantly high in native goats while lympocyte in sheep. On the other hand, the basophil, eosinophil and monocyte were not significant between native goats and sheep. 5) The amounts of total protein and glucose in the plasma of native goats were 6.2g/100ml and 53.6mg/100ml, and those of sheep were 5.6g/100ml and 45.7mg/100ml, which means that the values of native goats were significantly higher that those of sheep. The amount of total-lipid of native goats(127.6mg/100ml) was significantly than that of sheep(149.6mg/100ml). 6) The amount of non-protein nitrogen, cholesterol, Ca, P, K, Na and Cl were not different between native goats and sheep. 6. Economic analysis. 1) The gross revenue of a farm which fed native goats and sheep was 4,000won per head and the optimum size for feeding them in a farm as a subsidiary work is 5-10 heads. 2) Since there was no difference between housing and grazing, they can be fed in group for farm's subsidiary work. 3) They can be also fed by youths and house wives in the suburbs of cities, because labour requirement is estimated as only two hours per days for feeding 5 heads of native goats and sheep.

  • PDF