• Title/Summary/Keyword: content flow

Search Result 1,513, Processing Time 0.037 seconds

Properties of Shrinkage Reducing Agent used C12A7-Based Slag according to Content of Admixtures (C12A7계(系) 슬래그를 사용(使用)한 수축저감제(收縮低減劑)의 혼합재(混合材) 함량(含量)에 따른 특성(特性))

  • Park, Soo Hyun;Chu, Yong Sik;Seo, Sung Kwan;Park, Jae Wan
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.12-18
    • /
    • 2013
  • In this Study, it was fabricated that shrinkage reducing agent and mortar used $C_{12}A_7$-based slag enhanced the shrinkage reduction and compressive strength. To reduce cement content, setting time, flow and compressive strength of mortar with varying content of fly ash and blast furnace slag were experimented. The flow increased and setting time delayed as the increase of fly ash and blast furnace slag content. And early strength was lower and long age strength was higher than that of mortar with low content of admixture.

Development of Red Pepper Dryer -Simulation and Optimization- (고추 건조기(乾燥機)의 개발(開發)에 관한 연구(硏究) -시뮬레이션 및 최적화-)

  • Keum, D.H.;Choi, C.H.;Kim, S.Y.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.3
    • /
    • pp.248-262
    • /
    • 1991
  • Simulation model was developed to analyze drying process for tray type red pepper dryer and validated by experiments. This model could predict satisfactorily temperatures and moisture contents of red pepper and temperatures of drying air during drying. Optimize algorithm was developed to search control valiables (drying air temperature, air recycle ratio and air flow rate) of red pepper dryer based on a criterion of minimizing energy consumption under the constraint conditions that statisfied carotenoid retension of at least 210mg per 100g dry matter, the moisture content of bottom layer of 15% (d.b) and drying time of less than 35 hours. Step changes in drying air temperature and air recycle ratio were considered in the optimization. In single step in control variables, the difference of the moisture content between top layer and bottom layer was great and more fan power was required. As the drying trays were exchanged when the moisture content of bottom layer reached to 100% (d.b), fifty percent of energy was saved and the difference of moisture content was little. In double step changes in control variables, optimal conditions were found by changing the step when the moisture content of bottom layer reached to 100% (d.b) (about 19.8 hours from starting drying). Optimum air flow rate was $18.1cmm/m^2$. Optimum drying air temperature and air recycle ratio in the first step was $55.8^{\circ}C$ and 0.80, and in the second step $65.6^{\circ}C$ and 0.88, respectively. In triple step changes in control variables, the optimal conditions were found by changing the steps when the moisture content of bottom layer reached to 250% (d.b) and 150% (d.b). Optimal air temperatures were $66.2^{\circ}C$, $58.4^{\circ}C$ and $66.9^{\circ}C$, and optimal air recycle ratios were 0.778, 0.785, 0.862 at each step, respectively. Optimal air flow rate was $18.9cmm/m^2$. The best operating mode was triple step mode considering energy consumption, drying time, fan power, and quality of dried red pepper. When the triple step mode was used to dry the red pepper, the energy consumption was about 16.5%~57.2% less than that of the single step mode and the drying time was 6.6 hours shorter than that of the double step mode.

  • PDF

Concept and Application of Generalized Preferential Flow Model (GPFM) (Generalized Preferential Flow Model (GPFM)의 개념과 적용사례 연구)

  • Kim, Young-Jin;Steenhuis, Tammo;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.33-36
    • /
    • 2007
  • In recent years the convective-dispersive equation has been often discredited in predicting subsurface solute transport under field conditions due to presence of preferential flow paths. Kim et al. (2005) proposed a simple equation that can predict the breakthrough of solutes without excessive data requirements. In their Generalized Preferential Flow Model (GPFM), the soil is conceptually divided in a saturated "distribution layer" near the surface and a "conveyance zone" with preferential flow paths below. In this study, we test the model with previously published data, and compare it with a classical convective-dispersive model (CDM). With three parameters required-apparent water content of the distribution zone, and solute velocity and dispersion in the conveyance zone-GPFM was able to describe the breakthrough of solutes both through silty and sandy loam soils. Although both GPFM and CDM fitted the data well in visual, variables for GPFM were more realistic. The most sensitive parameter was the apparent water content, indicating that it is the determining factor to apply GPFM to various soil types, while Kim et al. (2005) reported that changing the velocity of GPFM reproduced solute transport when same soils were used. Overall, it seems that the GPFM has a great potential to predict solute leaching under field conditions with a wide range of generality.

Measurement of Soil Water Content by Time Domain Reflectometry (TDR(Time Domain Reflectometry)을 이용한 토양함수량의 측정)

  • Park, Jae-Hyeon;Yun, Seong-Yong;Kim, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.587-595
    • /
    • 1997
  • Experimental study on unsaturated flow in the soil is important to understand the characteristics of the water flow. Measurement of unsteady-state water movement using the traditional equipment (e.g. tensiometer) has a problem that requires relatively a long response time. In this study a quick measurement method of soil water flow using TDR is introduced. TDR consists of an electronic function generator which generates a squared wave, and an oscilloscope which catches the reflected wave. The wave is reflected where both the impedance of the transmission line and the propagation velocity are changed. The water content can be obtained from the travel time measured by means of TDR because the dielectric constant is affected by the change of soil water content. From the result of TDR calibration. TDR measurement error for the oven dried soil was found to be less than 3.5%. This supports that TDR is a viable technique to measure the unsteady-state water movement.

  • PDF

A REVIEW OF CANDU FEEDER WALL THINNING

  • Chung, Han-Sub
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.568-575
    • /
    • 2010
  • Flow Accelerated Corrosion is an active degradation mechanism of CANDU feeder. The tight bend downstream to Gray loc weld connection, close to reactor face, suffers significant wall thinning by FAC. Extensive in-service inspection of feeder wall thinning is very difficult because of the intense radiation field, complex geometry, and space restrictions. Development of a knowledge-based inspection program is important in order to guarantee that adequate wall thickness is maintained throughout the whole life of feeder. Research results and plant experiences are reviewed, and the plant inspection databases from Wolsong Units One to Four are analyzed in order to support developing such a knowledge-based inspection program. The initial thickness before wall thinning is highly non-uniform because of bending during manufacturing stage, and the thinning rate is non-uniform because of the mass transfer coefficient distributed non-uniformly depending on local hydraulics. It is obvious that the knowledge-based feeder inspection program should focus on both fastest thinning locations and thinnest locations. The feeder wall thinning rate is found to be correlated proportionately with QV of each channel. A statistical model is proposed to assess the remaining life of each feeder using the QV correlation and the measured thicknesses. W-1 feeder suffered significant thinning so that the shortest remaining life barely exceeded one year at the end of operation before replacement. W-2 feeder showed far slower thinning than W-1 feeder despite the faster coolant flow. It is believed that slower thinning in W-2 is because of higher chromium content in the carbon steel feeder material. The average Cr content of W-2 feeder is 0.051%, while that value is 0.02% for W-1 feeder. It is to be noted that FAC is reduced substantially even though the Cr content of W-2 feeder is still very low.

The properties of mortar using ground granulated blast-furnace slag (고로슬래그 미분말을 사용한 모르타르의 물성)

  • 김태형;김종인;최영화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.105-110
    • /
    • 1998
  • The propose of this study is to examine the mechanical properties of mortar using ground granulated blast-furnace(GGBF) slag. In this study, the mortar replaced by varying fineness and content of GGBF slag is investigated through the change of compressive strength, chemical resistance and weight loss. As the result, it has been found that GGBF slag increase somewhat higher flow value and compressive strength. In addition, the chemical resistance of motar using GGBF slag shows higher flow that of motar not containing GGBF slag.

  • PDF

Effects of Water on Mechanical Properties of Magnesium Metaphosphate Glass (MgO.$P_2O_5$ 유리의 기계적 성질에 미치는 수분의 영향)

  • 강은태;박용완
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.5
    • /
    • pp.75-80
    • /
    • 1986
  • The mechanical properties were measured for magnesium phosphate glasses containing small amounts of water. The decrease in hardness with increasing water content was resulted from a looser chain structure caused by water. The fracture of these glasses was changed from brittle fracture to plastic deformation as a results of the increased viscous flow with increasing water contents. The extent of any viscous flow or deformation initiating from the crack tips in these glasses could be considered as quite small.

  • PDF

Changes in the Rheological Characteristics by Various Concentrations and Temperatures of Korean white Gruel (농도와 온도에 따른 흰죽의 리올로지 특성 변화)

  • Lee, Chang-Ho;Han, Ouk
    • Korean journal of food and cookery science
    • /
    • v.11 no.5
    • /
    • pp.552-556
    • /
    • 1995
  • The rheological properties of Korean white gruel at various concentrations (4-7%) and temperatures (30-60$^{\circ}C$) were investigated. The rheological behavior of Korean white gruel was evaluated by Herschel-Bulkley equation and showed typical Bingham psedoplastic behavior with yield stress. Flow behavior index was increased at over 5% of rice content. Consistency index was increased by the increase of concentration of rice. But, measuring temperature was not effected in the flow behavior index and consistency index. Yield stress was increased by the incerase of concentration of rice and the decrease of measuring temperature. The activation energy of flow of Korean gruel increased from 7.646 to 32.949${\times}$10/Sup 6/ J/Kg$.$ mole by increasing concentration from 4% to 7%. As the temperature increased from 30$^{\circ}C$ to 60$^{\circ}C$, B-value decresed from 1.214 to 0.947 Flow behavior index and consistency index was reduced during storage.

  • PDF

A Study on the Relationship of Distraction Factors, Presence, Flow, and Learning Effects in HMD-based Immersed VR Learning (HMD기반 몰입형 VR 학습에서 방해요인, 프레즌스, 몰입, 학습효과 사이의 관계에 관한 연구)

  • Kwon, Chongsan
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.1002-1020
    • /
    • 2018
  • Virtual reality (VR) technologies, which have been improved of late, offer experiences closer to reality than before. While VR technologies are expected to be an effective medium if used in learning content that cannot be offered in real life, distraction factors in VR technologies may prevent the users' presence and flow, making these technologies ineffective. Therefore, this study, through experiment and observation, analyzed the effect of distraction factors on the user's experience perception and learning effect when using HMD-based immersive VR. Experimental results revealed that the distraction factors were shown to have a negative, albeit not generally significant (except for tactile interactivity), effect on vividness, tactile interactivity, locomotive interactivity, presence, and flow. Ultimately, they were shown to have a negative effect on learning.

Energy transport analysis for the Taylor-Proudman column in la rapidly-rotating compressible fluid (압축성 회전 유동에서의 Taylor-Proudman 기둥의 에너지 전달에 관한 해석)

  • Park Jun Sang;Hyun Jae Min
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.329-332
    • /
    • 2002
  • A theoretical study is made of the steady flow of a compressible fluid in a rapidly rotating finite cylinder. Flow is generated by imposing mechanical and/or thermal disturbances at the rotating endwall disks. Both the Ekman and Rossby numbers are small. A detailed consideration is given to the energy budget for a control volume in the Ekman boundary layer. A combination of physical variables, which is termed the energy contents, consisting of temperature and modified angular momentum, emerges to be relevant. The distinguishing features of a compressible fluid, in contrast to those of an incompressible fluid, are noted. For the Taylor-Proudman column to be sustained, in the interior, it is shown that the net energy transport between the solid disk wall and the interior fluid should vanish. Physical rationalizations are facilitated by resorting to the concept of the afore-stated energy content.

  • PDF