• 제목/요약/키워드: contamination materials

검색결과 724건 처리시간 0.032초

지하역사 승강장 공조 시스템 필터용 항바이러스 코팅 성능 및 재생 성능 평가 (Development of Optimal Antiviral Coating Method for the Air Filtration System of Subway Station)

  • 박대훈;황정호;신동호;김영훈;이건희;박인용;김상복;홍기정;한방우
    • 한국입자에어로졸학회지
    • /
    • 제18권1호
    • /
    • pp.9-21
    • /
    • 2022
  • In this study, a novel antiviral coating method for the air filtration system of subway station was investigated. Using dry aerosol coating process, we developed a high-performance antiviral air filter with spark discharger and carbon brush type ionizer. Silver nanoparticles were produced by a spark discharge generation system with ion injection system and were used as antiviral agents coated onto a medium grade air filter. The pressure drop, filtration efficiency, and antiviral ability of the filter against aerosolized MS2 virus particles as a surrogate of SARS-CoV-2 virus were tested with dust contamination. Dust contamination caused the increase of the filtration efficiency and pressure drop, while the antiviral agents (in this study, silver nanoparticles) coating did not have any significant effect on the filtration efficiency and pressure drop. Using these properties, we suggested a novel method to maximize the antiviral performance of the antiviral air filter that was contaminated by dust particles. Moreover theoretical analysis of antiviral ability with dust contamination and re-coated antiviral agents was carried out using a mathematical model to calculate the time-dependent antiviral effect of the filter under actual conditions of subway station. Our model can be used to apply on antiviral air filtration system of subway station for prevention of pandemic diffusion, and predict the life cycle of an antiviral filter.

Atmospheric Plasma Spray코팅을 이용한 Yttrium계 소재의 내플라즈마성 및 세정 공정에 관한 연구 (A Study on Plasma Corrosion Resistance and Cleaning Process of Yttrium-based Materials using Atmospheric Plasma Spray Coating)

  • 권혁성;김민중;소종호;신재수;정진욱;맹선정;윤주영
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.74-79
    • /
    • 2022
  • In this study, the plasma corrosion resistance and the change in the number of contamination particles generated using the plasma etching process and cleaning process of coating parts for semiconductor plasma etching equipment were investigated. As the coating method, atmospheric plasma spray (APS) was used, and the powder materials were Y2O3 and Y3Al5O12 (YAG). There was a clear difference in the densities of the coatings due to the difference in solubility due to the melting point of the powdered material. As a plasma environment, a mixed gas of CF4, O2, and Ar was used, and the etching process was performed at 200 W for 60 min. After the plasma etching process, a fluorinated film was formed on the surface, and it was confirmed that the plasma resistance was lowered and contaminant particles were generated. We performed a surface cleaning process using piranha solution(H2SO4(3):H2O2(1)) to remove the defect-causing surface fluorinated film. APS-Y2O3 and APS-YAG coatings commonly increased the number of defects (pores, cracks) on the coating surface by plasma etching and cleaning processes. As a result, it was confirmed that the generation of contamination particles increased and the breakdown voltage decreased. In particular, in the case of APS-YAG under the same cleaning process conditions, some of the fluorinated film remained and surface defects increased, which accelerated the increase in the number of contamination particles after cleaning. These results suggest that contaminating particles and the breakdown voltage that causes defects in semiconductor devices can be controlled through the optimization of the APS coating process and cleaning process.

Microstructural study of polycrystalline films prepared by Ni vapor induced crystallization

  • Ahn, Kyung-Min;Lee, Kye-Ung;Ahn, Byung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.715-717
    • /
    • 2006
  • $NiCl_2$ vapor was introduced into conventional furnace to conduct vapor-induced crystallization (VIC) process. We made the metal chloride atmosphere by sublimating the $NiCl_2$ compound. The $NiCl_2$ atmosphere enhanced the crystallization of amorphous silicon thin films. As the result, polycrystalline Si film with large grain size and low metal contamination has been obtained.

  • PDF

Computational and Experimental Study of Grain Growth in WC-Co and WC-VC-Co Cemented Carbides

  • Shin, Soon-Gi
    • 한국재료학회지
    • /
    • 제19권11호
    • /
    • pp.588-595
    • /
    • 2009
  • The knowledge of grain growth of carbide particles is very important for manufacturing micrograined cemented carbides. In the present study, continuous and discontinuous grain growth in WC-Co and WC-VC-Co cemented carbides is investigated using the Monte Carlo computer simulation technique. The Ostwald ripening process (solution/re-precipitation) and the grain boundary migration process are assumed in the simulation as the grain growth mechanism. The effects of liquid phase fraction, grain boundary energy and implanted coarse grain are examined. At higher liquid phase content, mass transfer via solid/liquid interfaces plays a major role in grain growth. Growth rate of the implanted grain was higher than that of the matrix grains through solution/re-precipitation and coalescence with neighboring grains. The results of these simulations qualitatively agree with experimental ones and suggest that distribution of liquid phase and carbide particle/carbide grain boundary energy as well as contamination by coarse grain are important factors controlling discontinuous grain growth in WC-Co and WC-VC-Co cemented carbides. The contamination by coarse grains must by avoided in the manufacturing process of fine grain cemented carbides, especially with low Co.

방사성물질과 접촉하는 작업의 손·발이 받는 피폭방사선량 평가에 대한 고찰 (A Review of Radiation Field Characteristics and Field Tests for Estimating on the Extremity Dose under Contact Tasks with Radioactive Materials)

  • 김희근;공태영;동경래;최은진
    • 방사선산업학회지
    • /
    • 제11권3호
    • /
    • pp.123-130
    • /
    • 2017
  • Concerns about high radiation exposure to the hands of radiation workers who may contact with radioactive contamination on surfaces in a nuclear power plant (NPP) had been raised, and the Korean regulatory body required the extremity dose estimation during contact tasks with radioactive materials. Korean NPPs conducted field tests to identify the incident radiation to the hands of radiation workers who may contact with radioactive contamination during maintenance periods. The results showed that the radiation fields for contact tasks are dominated by high energy photons. It was also found that the radiation doses to the hands of radiation workers in Korean NPPs were much less than the annual dose limits for extremities. This approach can be applicable to measure and estimate the extremity dose to the hands of medical workers who handle the radioactive materials in a hospital.

Ten-Year Performance of Shell-Treated Wooden Deck

  • RA, Jong Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권6호
    • /
    • pp.667-673
    • /
    • 2019
  • The performance of a wooden deck made of refractory materials that have difficulties in achieving target penetrations as stipulated in the specification and quality standards for treated wood in Korea, was assessed via a case study in this research. A wooden deck built in Jinju in 2009 was selected for this study because of its fabrication method using pressure and treated refractory materials. The penetration and retention analysis did not satisfy the domestic standard for treated wood. Inspection of the deck in 2019 revealed that the deck had been attacked by decay fungi. Cap rails showed much deeper and wider checking on their surface compared with the top and base rails, resulting in a severe fungal attack. The decking boards exhibited severe fungal decay primarily in the end parts. However, the rails and balusters without checks and posts were virtually free of fungal attack irrespective of the preservative penetration measures. Copper content in the soil 5 cm away from the deck was less than 150 mg/kg, implying that copper movement in the soil was very limited. These results suggest that the inhibition of surface propagation and the protection of end surfaces are essential factors in increasing the longevity of treated wooden decks; further, the results also showed that the deck was within an acceptable range from the point of copper contamination.

멸균물품의 유효기간에 관한 연구: 포장재와 보관환경을 중심으로 (Validity Periods of Sterilization Products: Focus on Packing Materials and Storage Environments)

  • 박현희;이광옥
    • 근관절건강학회지
    • /
    • 제30권3호
    • /
    • pp.263-272
    • /
    • 2023
  • Purpose: The aim of this study was to provide a scientific basis for shelf life and re-establish the shelf life in a hospital environment by investigating the validity periods of various packaging materials. Methods: We selected six departments to store sterilized items, prepared 482 sterilized items, and stored them for 12 months. Each sample was tested using a microbiological culture in the laboratory every two weeks. When the result was positive, the sample was considered contaminated. The temperature and relative humidity were measured using an automatic control system to investigate the storage environment during the study period. Results: Except for two samples, which were positive in the 22nd and 28th weeks, 480 samples were negative. The temperature and relative humidity of the sample storage area were measured every week. The annual average temperature was 23.6±1.6℃, and the mean relative humidity was 35.1±15.2%. The cabinets used in this study were the two-open and four-closed types. Conclusion: This study confirmed the validity of the expiration date in a hospital environment. Based on the results, the nonwoven fabric remained sterile for more than nine months. No case of contamination of the paper-plastic pouch packaging was observed, owing to the microbial culture for two months.

강우가 석산개발 지역 주변 하천의 오염에 미치는 영향에 관한 연구 (A Study on Effects of Rainfall on Contamination at Stream Around the Developed Quarry)

  • 이양규;한중근;홍기권
    • 한국지반신소재학회논문집
    • /
    • 제13권1호
    • /
    • pp.63-70
    • /
    • 2014
  • 본 연구에서는 강우가 석산개발 주변에 위치한 하천의 오염도에 미치는 영향을 평가하기 위하여, 강우량과 중금속 오염도의 관계 및 강우량과 수질 오염도의 관계를 분석하였다. 석산개발 부지 인근의 하천에 대한 중금속 오염도 조사 결과, 매립부지에 사용된 전석, 잔사 및 석분이 직접적인 오염원으로 작용한 것으로 분석되었다. 또한 강우량 증가에 따른 하천 내 유수량이 중금속 오염도에 큰 영향을 미치는 것으로 확인되었다. 수질오염도는 우기철에서 건기철로 변화되는 시기에 증가하였으며, 강우량이 증가하면서 과거 석산개발 부지로부터 많은 부유물질이 배출된 후, 강우가 감소함에 따라 하천에 저류되어 오염도가 증가하는 것으로 나타났다. 따라서 S하천에서 지속적인 중금속 오염 및 수질오염이 발생하고 있는 원인으로는 과거 석산개발 완료 후, 매립층에 사용된 재료 및 석산개발 부지에서 오염원이 강우에 의해 배출되는 것으로 판단되었다.