• Title/Summary/Keyword: contaminated site

Search Result 471, Processing Time 0.03 seconds

Assessment of Natural Attenuation Processes in the Groundwater Contaminated with Trichloroethylene (TCE) Using Multi-Species Reactive Transport Modeling (다성분 반응 이동 모델링을 이용한 트리클로로에틸렌(TCE)으로 오염된 지하수에서의 자연저감 평가)

  • Jeen, Sung-Wook;Jun, Seong-Chun;Kim, Rak-Hyeon;Hwang, Hyoun-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.101-113
    • /
    • 2016
  • To properly manage and remediate groundwater contaminated with chlorinated hydrocarbons such as trichloroethylene (TCE), it is necessary to assess natural attenuation processes of contaminants in the aquifer along with investigation of contamination history and aquifer characterization. This study evaluated natural attenuation processes of TCE at an industrial site in Korea by delineating hydrogeochemical characteristics along the flow path of contaminated groundwater, by calculating reaction rate constants for TCE and its degradation products, and by using geochemical and reactive transport modeling. The monitoring data showed that TCE tended to be transformed to cis-1,2-dichloroethene (cis-1,2-DCE) and further to vinyl chloride (VC) via microbial reductive dechlorination, although the degree was not too significant. According to our modeling results, the temporal and spatial distribution of the TCE plume suggested the dominant role of biodegradation in attenuation processes. This study can provide a useful method for assessing natural attenuation processes in the aquifer contaminated with chlorinated hydrocarbons and can be applied to other sites with similar hydrological, microbiological, and geochemical settings.

A Comparison on the Effect of Soil Improvement Methods for the Remediation of Heavy Metal contaminated Farm Land Soil near Abandoned Mines (중금속 오염 농경지 토양의 복원을 위한 토량개량법의 효과 비교)

  • Yu, Chan;Yun, Sung-Wook;Kang, Sin-Il;Jin, Hae-Geun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.984-999
    • /
    • 2010
  • A long-term field demonstration experiment of selected stabilization method to reduce the heavy metal mobility in farmland soil contaminated by heavy metals around abandoned mine site was conducted. Field demonstration experiments were established on the contaminated farmland with the wooden plate(thickness=1cm) which dimension were width=200cm, Length=200cm, height=80cm and filled with treated soil, which was mixed with lime stone and steel refining slag except on control plot. Soil samples in the plots were collected and analyzed during the experiment period(2008. 2~2008. 8) after the installation of the plots. Field demonstration experiments results showed that the application ratio of lime stone 5% was effective for immobilizing heavy metal components in contaminated farmland soil.

  • PDF

A Result of Field Demonstration Experiment on the Remediation of Farm Land Soil contaminated by Heavy Metals (중금속 오염 농경지 토양의 복원을 위한 현장실증시험 결과)

  • Yu, Chan;Yun, Sung-Wook;Park, Jin-Chul;Lee, Jung-Hoon;Choi, Seung-Jin;Yoon, Seung-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.265-277
    • /
    • 2009
  • A long-term field demonstration experiment of selected stabilization method to reduce the heavy metal mobility in farmland soil contaminated by heavy metals around abandoned mine site was conducted. Field demonstration experiments were established on the contaminated farmland with the wooden plate(thickness=1cm) which dimension were width=200cm, Length=200cm, height=80cm and filled with treated soil, which was mixed with lime stone and steel refining slag except on control plot. Soil samples were collected and analyzed during the experiment period(2008. 2~2008. 8) after the installation of the plots. Field demonstration experiments results showed that the application ratio of lime stone 5% was effective for immobilizing heavy metal components in contaminated farmland soil.

  • PDF

A Comparison on Effect of Stabilization Methods for Heavy Metal contaminated Farm Land Soil by the Field Demonstration Experiment (현장실증시험을 통한 중금속 오염농경지의 안정화처리공법 효과비교)

  • Yu, Chan;Yun, Sung-Wook;Lee, Jung-Hoon;Choi, Seung-Jin;Choi, Duck-Yong;Yi, Ji-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1487-1506
    • /
    • 2009
  • A long-term field experiment of the selected stabilization methods(Cover system, full range and upper range treatment) was conducted to reduce the heavy metal mobility in farmland soil which was contaminated by heavy metals around abandoned mine site. Field experiments were established on the contaminated farmland with the wooden plate and filled with treated soil, which was mixed with lime stone and steel reforming slag except on control plot. Soil samples were collected and analyzed during the experiment period(about 4 months) after the installation of the plots. Field demonstration experiments results showed that the cover system and the full range treatment of the selected stabilization methods applied to the application ratio of lime stone 5% and steel refining slag 2% were effective for immobilizing heavy metal components in contaminated farmland soil.

  • PDF

Numerical Simulation of Water Table Drawdown due to Groundwater Pumping in a Contaminated Aquifer System at a Shooting Test Site, Pocheon, Korea

  • Kihm, Jung-Hwi;Hwang, Gisub
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.247-257
    • /
    • 2021
  • The study area has been contaminated with explosive materials and heavy metals for several decades. For the design of the pump and treat remediation method, groundwater flow before and during groundwater pumping in a contaminated aquifer system was simulated, calibrated, and predicted using a generalized multidimensional hydrological numerical model. A three-dimensional geologic formation model representing the geology, hydrogeology, and topography of the aquifer system was established. A steady-state numerical simulation with model calibration was performed to obtain initial steady-state spatial distributions of groundwater flow and groundwater table in the aquifer system before groundwater pumping, and its results were illustrated and analyzed. A series of transient-state numerical simulations were then performed during groundwater pumping with the four different pumping rates at a potential location of the pumping well. Its results are illustrated and analyzed to provide primary reference data for the pump and treat remediation method. The results of both steady-state and transient-state numerical simulations show that the spatial distribution and properties of the geologic media and the topography have significant effects on the groundwater flow and thus depression zone.

Policy Suggestions to Korea from a Comparison Study of the United States, the United Kingdom, Germany, the Netherlands, and Denmark's Polices on Risk Assessment of Contaminated Soils (토양오염 지역의 위해성 평가에 관한 외국 정책의 비교분석 및 우리나라의 정책 개선에 관한 고찰)

  • Park Yong-Ha;Yang Jay-E.;Ok Yong-Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.1-10
    • /
    • 2005
  • Policies of the United States, the United Kingdom, the Netherlands, Germany and Denmark were compared and analyzed on risk assessment of contaminated sites. These countries were chosen from a feasible preliminary analysis of 18 countries of the European Union and the U. S. All the countries selected met two major criteria : I) implementation of risk assessment to determine the soil contamination and remediation targets of contaminated sites, ii) use of soil guidance values and risk assessment as complementary measures to determine soil contamination. Suggested policy improvements to Korea regarding these issues include i) legislation of a rational risk assessment methodology of contaminated sites, and ii) enactment of collaboration of risk assessment with the soil guidance values. To establish effective risk assessment legislation, additional in-depth research on social, economic and long-term effects of the proposed risk assessment methodologies, as well as the mutual consent of all parties including academia, industry, and administration will be necessary. Linking risk assessment with soil guidance values would be applicable to a site contaminated where the contaminant concentration exceeds a certain soil guidance value. In parallel, application of risk assessment to a site where a contaminant concentration is naturally different such as mining sites would be plausible. The policy suggestions above are not yet conclusive due to a lack of policy implementation, and simulation. Thus, additional research on developing risk assessment methodology is needed. Nevertheless, initiation of the suggested policy would increase the efficacy of Korean policy regarding the survey and remediation of contaminated sites.

A Case Study of Monitored Natural Attenuation at the Petroleum Hydrocarbon Contaminated Site : II. Evaluation of Natural Attenuation by Groundwater Monitoring (유류오염부지에서 자연저감기법 적용 사례연구 II. 지하수모니터링에 의한 자연저감 평가)

  • Yun Jeong Ki;Lee Min Hyo;Lee Suk Young;Noh Hoe Jung;Kim Moon Soo;Lee Kang Kun;Yang Chang Sool
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.38-48
    • /
    • 2004
  • Natural attenuation of petroleum hydrocarbon was investigated at an industrial complex about 45 Km away from Seoul. The three-years monitoring results indicated that the concentrations of DO, nitrate, and sulfate in the contaminated area were significantly lower than the background monitoring groundwater under the non-contaminated area. The results also showed a higher ferrous iron concentration, a lower redox potential, and a higher (neutral) pH in the contaminated groundwater, suggesting that biodegradation of TEX(Toluene, Ethylbenzene, Xylene) is the major on-going process in the contaminated area. Groundwater in the contaminated area is anaerobic, and sulfate reduction is the dominant terminal electron accepting process in the area. The total attenuation rate was about 0.0017∼0.0224day$^{-1}$ and the estimated first-order degradation rate constant(λ) was 0.0008∼0.0106day$^{-1}$ . However, the reduction of TEX concentration in the groundwater was resulted from not only biodegradation but also dilution and reaeration through recharge of uncotaminated surface and groundwater. The natural attenuation was, therefore, found to be an effective, on-going remedial process at the site.

Surfactant Enhanced In-Situ Soil Flushing Pilot Test for the Soil and Groundwater Remediation in an Oil Contaminated Site (계면활성제 원위치 토양 세정법을 이용한 유류 오염 지역 토양.지하수 정화 실증 시험)

  • 이민희;정상용;최상일;강동환;김민철
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.77-86
    • /
    • 2002
  • Surfactant enhanced in-situ soil flushing was performed to remediate the soil and groundwater at an oil contaminated site, where had been used as a military vehicle repair area for 40 years. A section from the contaminated site (4.5 m $\times$ 4.5 m $\times$ 6.0 m) was selected for the research, which was composed of heterogeneous sandy and silt-sandy soils with average $K_d$ of 2.0$\times$$10^{-4}$cm/sec. Two percent of sorbitan monooleate (POE 20) and 0.07% of iso-prophyl alcohol were mixed for the surfactant solution and 3 pore volumes of surfactant solution were injected to remove oil from the contaminated section. Four injection wells and two extraction wells were built in the section to flush surfactant solution. Water samples taken from extraction wells and the storage tank were analyzed on a gas-chromatography (GC) for TPH concentration in the effluent with different time. Five pore volumes of solution were extracted while TPH concentration in soil and groundwater at the section were below the Waste Water Discharge Limit (WWDL). The effluent TPH concentration from wells with only water flushing was below 10 ppm. However, the effluent concentration using surfactant solution flushing increased to 1751 ppm, which was more than 170 times compared with the concentration with only water flushing. Total 18.5 kg of oil (TPH) was removed from the soil and groundwater at the section. The concentration of heavy metals in the effluent solution also increased with the increase of TPH concentration, suggesting that the surfactant enhanced in-situ flushing be available to remove not only oil but heavy metals from contaminated sites. The removal efficiency of surfactant enhanced in-situ flushing was investigated at the real contaminated site in Korea. Results suggest that in-situ soil flushing could be a successful process to remediate contaminated sites distributed in Korea.

Physicochemical Properties of Landfill Mined Wastes from Old Landfill Site (불량 매립지에서 굴착된 폐기물의 물리화학적 특성평가)

  • 남궁완;이노섭;박준석;인병훈
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.99-108
    • /
    • 2002
  • This study was carried out to evaluate the Physicochemical characteristics of mined waste(separated waste and soil) and to predict environmental effect of an old landfill site located at north of Seoul. Municipal solid waster(MSW) had been disposed of at the old landfill site used in this study for about 2 years(1990-1992). The old landfill site selected for this study had accepted mainly municipal solid waste. The landfill-mined waste contained separated waste (40.9%) and soil(59.1%) by wet weight basis. The separated waste consisted of combustible(91.0%) and non-combustible(9.0%). The combustible waste was mainly non-biodegradable plastics. The low heating value of the separated combustible waste, which is calculated by Dulong's equation, was as high as 3,470kcal/kg. According to the Korean Extraction Procedure, separated waste and soil were proved to be not hazardous. The total content of heavy metal in the separated waste and soil met standard of California State, USA. Therefore the separated waste may be relandfilled at a sanitary landfill site and/or burned up at an incinerator, and the separated old soil may be used ad landfill cover-soil at a sanitary landfill site. Water quality of two streams was grade IV, of which water could be used as industrial and agricultural water. The streams near the landfill site might not be contaminated by leachate from the old landfill site. It was estimated that organic matter in the old landfill site would not be actively biodegraded within a short period of time.

Human Risk Assessment of a Contaminated Site Using Korean Risk-Based Corrective Action (K-RBCA) Software (한국형 소프트웨어를 이용한 유류.중금속 복합오염지역의 인체위해성평가 및 RBCA Tool Kit과의 비교분석)

  • Nam, Taek-Woo;Ryu, Hye-Rim;Kim, Young-Jin;Ko, Seok-Oh;Baek, Ki-Tae;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.1
    • /
    • pp.32-41
    • /
    • 2011
  • By using a newly developed Korean risk-based corrective action (K-RBCA) software (K-RBCA) and the RBCA Tool Kit, risk assessment was performed on a site that was contaminated with aromatic hydrocarbons and heavy metals. Eight chemicals including benzene, ethylbenzene, xylenes, naphthalene, benz(a) anthracene, benzo(b) fluoranthene, benzo(a) pyrene, and arsenic that exceeded the US EPA Soil Screening Level were chosen as the target pollutants. A conceptual site model was constructed based on the site-specific effective exposure pathways. According to the RBCA Tool Kit the carcinogenic risk of arsenic was larger than $10^{-6}$, which is the generally acceptable carcinogenic risk level. The K-RBCA estimated the same level of carcinogenic risk for arsenic. With the RBCA Tool Kit, the carcinogenic risk of benzo(a) pyrene was estimated to be about $1.3{\times}10^{-6}$. However, with the K-RBCA benzo(a) pyrene did not exhibit any risk. The inconsistency between the softwares was attributed to the different fundamental settings (i.e., medium division) between the two softwares. While the K-RBCA divides medium into surface soil, subsurface soil, and groundwater, the RBCA Tool Kit divides medium into only soil and groundwater. These differences lead to the different exposure pathways used by the two softwares. The K-RBCA considers the exposure pathways in surface soil and subsurface soil separately to estimate risk, however, the RBCA Tool Kit considers the surface soil and subsurface soil as one and uses the integrated exposure pathways to estimate risk. Thus the resulting risk is higher when the RBCA Tool Kit is used than when the K-RBCA is used. The results from this study show that there is no significant difference in the risks estimated by the two softwares, thus, it is reasonable to use the K-RBCA we developed in risk assessment of soil and groundwater. In addition, the present study demonstrates that the assessor should be familiar with the characteristics of a contaminated site and the assumptions used by a risk assessment software when carrying out risk assessment.