• Title/Summary/Keyword: contaminated ground water

Search Result 119, Processing Time 0.023 seconds

A Study on the Variation of Resistivity of the Unsaturated Sandy Soils Contaminated by Leachate (침출수로 오염된 불포화사질토의 전기비저항 변화에 대한 연구)

  • Yoon, Chun-Gyeong;Yoo, Chan
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.2
    • /
    • pp.112-122
    • /
    • 1998
  • Measurement of electrical resistivity in soils has been used for many years with purpose of estimating in situ porosity or density. Recently electrical resistivity has also been used as an indicator of soil contaimination. This paper presents the result of laboratory experiment to investigate the resistivity variation in contaminated sandy soils. The results can be used with the Cone Penetrometer Test (CPT) result to analyse ground condition. In the experiment, the water content and leachate concentration of soils were controlled by groundwater and leachate, and then the resistivity measurement was made with 'STING-R1' by Advanced Geosciences Inc. In the case of using groundwater, the resistivity was in the range of over 1000${\omega}{\cdot}m$, but in the case of using polluted water by leachate, the resistivity decreased significantly down to 10~ 100${\omega}{\cdot}m$ for the same moisture content. Also the resistivity varied according to the degree of saturatrion. Therefore, if soil is contaminated by leachate, the CPT with electrical resistivity sensor might be used to investigate the contamination status and plume migration. But exact component of leachate and the pollutant concentration are still hard to identify.

  • PDF

Application of Soil's Self-Decontamination Ability to Contaminated Ground (흙의 자체정화능력을 이용한 오염된 토양정화)

  • Jeong, Jin-Seob;Jhung, Jhung-Kwon;Kim, Tae-Hyung;Fang, Hsai-Yang
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.632-638
    • /
    • 2006
  • There are numerous approaches available to cleanup a contaminated surface and subsurface ground currently in use, however, these methods all classify the decontamination after the contamination has penetrated into the soil masses and is costly. Unlike these approaches, in this study, utilization of soil's self-decontamination ability by rearranging and preplanning of the topographical features and surface and subsurface drainage systems for the potential contamination sites before or during contamination process has been considered as an another cleanup method. Step by step explanations on why and how to develop the self-decontamination procedure is proposed in detail. Two examples are presented including contaminated saltwater intrusion along a coastal region and control or prevention of radioactive toxic radon gas ($^{222}Rn$) in residential areas. The effectiveness of the proposed systems to these two examples using the soil's self-decontamination ability is well illustrated.

Case Studies of Geophysical Mapping of Hazard and Contaminated Zones in Abandoned Mine Lands (폐광 부지의 재해 및 오염대 조사관련 물리탐사자료의 고찰)

  • Sim, Min-Sub;Ju, Hyeon-Tae;Kim, Kwan-Soo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.525-534
    • /
    • 2014
  • Environmental problems typically occurring in abandoned mine lands (AML) include: contaminated and acidic surface water and groundwater; stockpiled waste rock and mill tailings; and ground subsidences due to mining operations. This study examines the effectiveness of various geophysical techniques for mapping potential hazard and contaminated zones. Four AML sites with sedimentation contamination problems, acid mine drainage (AMD) channels, ground subsidence, manmade liner leakage, and buried mine tailings, were selected to examine the applicability of various geophysical methods to the identification of the different types of mine hazards. Geophysical results were correlated to borehole data (core samples, well logs, tomographic profiles, etc.) and water sample data (pH, electrical conductivity (EC), and heavy metal contents). Zones of low electrical resistivity (ER) corresponded to areas contaminated by heavy metals, especially contamination by Cu, Pb, and Zn. The main pathways of AMD leachate were successfully mapped using ER methods (low anomaly peaks), self-potential (SP) curves (negative peaks), and ground penetrating radar (GPR) at shallow penetration depths. Mine cavities were well located based on composite interpretations of ER, seismic tomography, and well-log records; mine cavity locations were also observed in drill core data and using borehole image processing systems (BIPS). Damaged zones in buried manmade liners (used to block descending leachate) were precisely detected by ER mapping, and buried rock waste and tailings piles were characterized by low-velocity zones in seismic refraction data and high-resistivity zones in the ER data.

Quality control for the liquid oxygen as the oxidizer of launcher and the liquid oxygen filling system as ground facility (액체산소를 사용하는 발사체 산화제 및 산화제 지상공급시스템의 품질관리)

  • Kim, Ji-Hoon;Yoo, Byung-Il;Kang, Sun-Il;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.309-312
    • /
    • 2009
  • The various hazards should be eliminated before operations for the successful launches or tests. Using the contaminated propellants is one of the causes for the launch and test failures. Especially, the systems using liquid oxygen as an oxidizer have risks about fires and explosions not be forecasted if they are contaminated by oil, water and mechanical impurities. The procedure for the quality control of the liquid oxygen and the liquid oxygen filling system and the lessons learned from the first launch preparation with the system are introduced on this paper.

  • PDF

Watershed Classification Using Statistical Analysis of water Quality Data from Muju area (무주지역 수질특성자료의 통계학적 분석에 의한 소유역 구분)

  • 한원식;우남칠;이기철;이광식
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.19-32
    • /
    • 2002
  • This study is objected to identify the relations between surface- and shallow ground-water and the seasonal variation of their qualities in watersheds near Muju area. The water type shows mainly Ca-$HCO_3$type. Heavy-metal contamination of surface water is locally detected, due to the mixing with mine drainage. In October nitrate concentration is especially high in densely populated area. Cluster Analysis and Principal Component Analysis are implemented to interpret the complexity of the chemical variation of surface- and ground-water with large amount of chemical data. Based on the cluster analysis, surface-water was divided into five groups and ground-water into three groups. Principal Component Analysis efficiently supports the result of cluster analysis, allowing the identification of three main factors controlling the water quality. There are (1) hydrogeochemical factor, (2) anthropogenic factor and (3) heavy metal contaminated by mine drainage.

THE EFFECTS OF SURFACE CONTAMINATION BY HEMOSTATIC AGENTS ON THE SHEAR BOND STRENGTH OF COMPOMER (지혈제 오염이 콤포머의 전단결합강도에 미치는 영향)

  • Heo, Jeong-Moo;Kwak, Ju-Seog;Lee, Hwang;Lee, Su-Jong;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.2
    • /
    • pp.150-157
    • /
    • 2002
  • One of the latest concepts in bonding are "total etch", in which both enamel and dentin are etched with an acid to remove the smear layers, and "wet dentin" in which the dentin is not dry but left moist before application of the bonding primer Ideally the application of a bonding agent to tooth structure should be insensitive to minor contamination from oral fluids. Clinically, contaminations such as saliva, gingival fluid, blood and handpiece lubricant are often encountered by dentists during cavity preparation. The aim of this study was to evaluate the effect of contamination by hemostatic agents on shear bond strength of compomer restorations. One hundred and ten extracted human maxillary and mandibular molar teeth were collected. The teeth were removed soft tissue remnant and debris and stored in physiologic solution until they were used. Small flat area on dentin of the buccal surface were wet ground serially with 400, 800 and 1200 abrasive papers on automatic polishing machine. The teeth were randomly divided into 11 groups. Each group was conditioned as follows : Group 1: Dentin surface was not etched and not contaminated by hemostatic agents. Group 2: Dentin surface was not etched but was contaminated by Astringedent$^{\circledR}$(Ultradent product Inc., Utah, U.S.A.) Group 3: Dentin surface was not etched but was contaminated by Bosmin$^{\circledR}$(Jeil Pharm, Korea.). Group 4: Dentin surface was not etched but was contaminated by Epri-dent$^{\circledR}$(Epr Industries, NJ, U.S.A.). Group 5: Dentin surface was etched and not contaminated by hemostatic agents. Group 6: Dentin sorface was etched and contaminated by Astringedent$^{\circledR}$. Group 7 : Dentin surface was etched and contaminated by Bosmin$^{\circledR}$. Group 8: Dentin surface was etched and contaminated by Epri-dent$^{\circledR}$. Group 9: Dentin surface was contaminated by Astringedent$^{\circledR}$. The contaminated surface was rinsed by water and dried by compressed air. Group 10: Dentin surface was contaminated by Bosmin$^{\circledR}$. The contaminated surface was rinsed by water and dried by compressed air. Group 11 : Dentin surface was contaminated by Epri-dent$^{\circledR}$. The contaminated surface was rinsed by water and dried by compressed air. After surface conditioning, F2000$^{\circledR}$ was applicated on the conditoned dentin surface The teeth were thermocycled in distilled water at 5$^{\circ}C$ and 55$^{\circ}C$ for 1,000 cycles. The samples were placed on the binder with the bonded compomer-dentin interface parallel to the knife-edge shearing rod of the Universal Testing Machine(Zwick Z020, Zwick Co., Germany) running at a cross head speed or 1.0 mm/min. Group 2 showed significant decrease in shear bond strength compared with group 1 and group 6 showed significant decrease in shear bond strength compared with group 5. There were no significant differences in shear bond strength between group 5 and group 9, 10 and 11.

Evaluation of Ground-Water Sampling Techniques for Analysis of Chlorofluorocarbons (지하수의 CFCs(Chlorofluorocarbons) 조사를 위한 시료 채취 방법의 평가)

  • 고동찬;이대하
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.2
    • /
    • pp.1-8
    • /
    • 2003
  • Two types of ground-water sampling techniques for CFCs (chlorofluorocarbons) analysis, the cold-welded copper tube method and flame-sealed borosilicate glass ampule method, were compared and evaluated. CFCs concentrations by the copper tube method showed a poor reproducibility among triplicates whereas those by the glass ampule method showed a good agreement and relative standard deviations of triplicates were less than 5%. The poor reproducibility of the copper tube method appears to be attributed to the incomplete sealing in connection between faucets of wellhead and the sampling apparatus. The copper tube method also showed higher CFCs concentrations than the glass ampule method, which is more pronounced for CFC-11 than for CFC-12. The plastic tubings and rubber gasket of faucets in case of the copper tube method possibly contaminated the samples with CFC-11 and CFC-12. The potential of CFCs contamination for the glass ampule method was eliminated by using stainless steel and Nylon only and by connecting the sampling equipment directly to the main discharge pipe of wellhead. The validity of the glass ampule method were also verified by detecting very low level of CFCs for the ground-water sample which is old enough to have negligible CFCs.

Application of 4-D resistivity imaging technique to visualize the migration of injected materials in subsurface (지하주입 물질 거동 규명을 위한 4차원 전기비저항 영상화)

  • Kim, Jung-Ho;Yi, Myeong-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.12a
    • /
    • pp.31-42
    • /
    • 2007
  • Dc resistivity monitoring has been increasingly used in order to understand the changes of subsurface conditions in terms of conductivity. The commonly adopted interpretation approach which separately inverts time-lapse data may generate inversion artifacts due to measurement error. Eventually the contaminated error amplifies the artifacts when reconstructing the difference images to quantitatively estimate the change of ground condition. In order to alleviate the problems, we defined the subsurface structure as four dimensional (4-D) space-time model and developed 4-D inversion algorithm which can calculate the reasonable subsurface structure continuously changing in time even when the material properties change during data measurements. In this paper, we discussed two case histories of resistivity monitoring to study the ground condition change when the properties of the subsurface material were artificially altered by injecting conductive materials into the ground: (1) dye tracer experiment to study the applicability of electrical resistivity tomography to monitoring of water movement in soil profile and (2) the evaluation of cement grouting performed to reinforce the ground. Through these two case histories, we demonstrated that the 4-D resistivity imaging technique is very powerful to precisely delineate the change of ground condition. Particularly owing to the 4-D inversion algorithm, we were able to reconstruct the history of the change of subsurface material property.

  • PDF

Hydrogeochemical Environmental Research in Nitrate Contamination in Alluvial Fan Area Groundwater in Tsukui, Central Japan (일본 츠꾸이 선상지 지하수의 질산성 질소 오염에 대한 수문지구화학적 연구)

  • Okazaki, Masanori;Ham, Young-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.431-435
    • /
    • 2004
  • A nitrate-contaminated groundwater was hydrogeochemically investigated to estimate the factors controlling groundwater quality in an alluvial fan area. Even though monthly groundwater levels increased with monthly rainfalls, the monthly $NO_3^--N$ concentrations in groundwater showed a small variation, mostly exceeding a maximum contaminant level of 10 mg $L^{-1}$ in environmental quality standards for groundwater during 2003. The 2003 annual groundwater recharge was 1,730 mm =20,056 mm-18,326 mm. Where 20,056 mm and 18,326 mm are annual sum of daily increase and decrease in ground water level. However, the annual sum of increase in ground water level (20,056 mm) was approximately 10 times higher than annual rainfall. Moreover, the annual sum of daily ground water level decrease (-18,326mm) showed that a large amount of groundwater was discharged with $NO_3^-$-contamination. Hydrogeochemically, a large amount of groundwater input and output through the alluvial fan area were observed after rainfall with a considerably high concentration of $NO_3^-$. Consequently, this alluvial fan area including forest area reflects on the evidence under the condition of 'nitrogen excess' or 'nitrogen saturation'. In addition, such a large amount of groundwater outflow can cause environmental damage in surface water, associated with $NO_3^-$- contamination. This study also expects that this hydrogeochemical data will be useful for water management.

Characteristics of Quality and Flow of Water Resources at Palaces in Seoul Metropolitan (서울 시내 궁궐 수원의 수질과 유동 특성)

  • Naranchimeg., B;Lee, Jae-Min;Woo, Nam-C.;Kim, Youn-Tae;Lee, Kang-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.2
    • /
    • pp.61-76
    • /
    • 2011
  • This study was objected to provide suggestions for best management practices to restore the cultural and historical values of the wells in Palaces as well as their water qualities. Water resources in the five Palaces in Seoul Metropolitan, including Gyeongbokgung, Changdeokgung, Changgyeonggung, Jongmyo Shrine, and Deoksugung, were surveyed for their physical flows and chemical compositions from April to July in 2010. Ground waters in most wells were found at depths within 5 m from the ground surface, showing typical water-table aquifer systems. Hydraulic gradients indicate water resources in Gyeongbokgung, Changdeokgung, and Changgyeonggung flowing toward south, and toward east in Deoksugung area. Especially, water-level fluctuation data at S-10 in Deoksugung implied the influence of groundwater discharge facility. In Jongmyo Shrine, water was not detected in wells, indicating the water level was lower than the well depth. Based on the water chemistry and stable isotope analyses, water resources and their qualities appeared to be formed by the water-rock interaction along the groundwater paths. S-10 (Deoksugung) and S-14 (Changgyeonggung) samples were contaminated with nitrate ($NO_3$) in levels of higher than Korean drinking water standard, 10 mg/L as $NO_3$-N, but once in four sampling campaigns. In the situation that water resources in Palaces still maintain natural characteristics, the materials that will be used for the restoration and improvement of the Palace water supplies should be carefully selected not to disturb the natural integrity. In addition, because the wells are located in the center of metropolitan area, a systematic monitoring should be applied to detect and to manage the potential impacts of underground construction and various pollution sources.