Application of Soil's Self-Decontamination Ability to Contaminated Ground

흙의 자체정화능력을 이용한 오염된 토양정화

  • Jeong, Jin-Seob (Department of Civil, Environmental and Urban Engineering, Wonkwang University) ;
  • Jhung, Jhung-Kwon (Department of Civil, Environmental and Urban Engineering, Wonkwang University) ;
  • Kim, Tae-Hyung (Department of Civil and Environmental System Engineering, Korea Maritime University) ;
  • Fang, Hsai-Yang (Global Institute for Energy & Enviromental Systems, The University of North Carolina at Charlotte)
  • 정진섭 (원광대학교 토목환경도시공학부) ;
  • 정정권 (원광대학교 토목환경도시공학부) ;
  • 김태형 (한국해양대학교 토목환경시스템공학부) ;
  • Received : 2006.02.14
  • Accepted : 2006.03.31
  • Published : 2006.07.30

Abstract

There are numerous approaches available to cleanup a contaminated surface and subsurface ground currently in use, however, these methods all classify the decontamination after the contamination has penetrated into the soil masses and is costly. Unlike these approaches, in this study, utilization of soil's self-decontamination ability by rearranging and preplanning of the topographical features and surface and subsurface drainage systems for the potential contamination sites before or during contamination process has been considered as an another cleanup method. Step by step explanations on why and how to develop the self-decontamination procedure is proposed in detail. Two examples are presented including contaminated saltwater intrusion along a coastal region and control or prevention of radioactive toxic radon gas ($^{222}Rn$) in residential areas. The effectiveness of the proposed systems to these two examples using the soil's self-decontamination ability is well illustrated.

최근에 오염된 토양을 정화하기 위해서 다양한 방법들이 사용되고 있으나 이들 대부분은 이미 오염된 토양에 대한 정화기술로서 많은 비용이 수반되는 단점이 있다. 본 연구에서는 이들 방법과는 달리 잠재적인 토양오염지역에서 오염되기 전이나 혹은 진행 중일 때 지형학적인 특징, 지표 위나 아래의 배수시스템의 재배열 및 선행계획을 통해 토양자체의 정화능력을 이용하는 새로운 정화방법을 고찰하였다. 즉, 토양자체 정화과정이 왜, 어떻게 발전되는가에 대해 단계적으로 규명하였다. 해안지역에서 오염된 바닷물의 침투와 거주지역에서 유해 라돈가스($^{222}Rn$)의 조절 및 제거 등 두 가지 사례를 통해 흙의 자체정화 능력을 이용한 토양정화방법의 효율성을 평가하였다.

Keywords

References

  1. Blanck, E., Handbuck der Bodenlehre, 6, Julius Springer, Berlin (1938)
  2. Collins, K. and McGown, A., The Form and Function of Microfabric Features In a Variety of Natural Soils, Geotechnique, 24(2), pp. 223-254 (1974) https://doi.org/10.1680/geot.1974.24.2.223
  3. DER, General Remedial Action Details for Radon Gas Mitigation, Pennsylvania Department of Environmental Resources, Harrisburg, PA May, p. 38 (1985)
  4. Fang, H. Y., Expert Systems for Assessment of Radon Gas, ASCE Environmental Engineering 1989 Specialty Conference, J. F. Malina, Jr. editor, ASCE, NY, pp. 97-104 (1989)
  5. Fang, H. Y., Removal of Radioactive/toxic Radon Gas in Subsurface Soil Layer, Engineering in Our Environment, Proceedings, Annual Conference and 1st Biennial Environmental Specialty Conference, Canadian Society for Civil Engineering, Hamilton, Canada, I Environment, pp. 471-490 (1990)
  6. Fang, H. Y., Introduction to Environmental Geotechnology, CRC Press, Boca Raton, FL, pp. 299-332 (1997)
  7. Fang, H. Y., Radioactive Nuclear Wastes, ASCE Practice Periodical of Hazardous, Toxic and Radioactive Waste Management, 6(2), pp. 102-111(2002) https://doi.org/10.1061/(ASCE)1090-025X(2002)6:2(102)
  8. Fang, H. Y., Varrin, R. D. and Salam, A., Model Study of Subsidence in the Delaware-Maryland-Virginia Peninsula Area, Chapter 22, Analysis and Design of Building Foundations, Envo Publishing Co. pp. 655-670 (1976)
  9. Fang, H. Y., Luo, G. Y. and Chu, T. G., Radioactive Toxic Radon Gas and its Control Methods, Proceedings, 1st International Symposium on Environmental Geotechnology, 2, pp. 219-231 (1987)
  10. Holtz, R. D. and Kovacs, W. D., An Introduction to Geotechnical Engineering, Prentice-Hall, New Jersey, p. 732 (1981)
  11. Hunt, J. R., Sitar, N. and Udell, K. S., Nonaqueous Phase Liquid Transport and Cleanup, 1: Analysis of mechanisms, Water Resources Research, 24(8), pp. 1247-1258 (1988) https://doi.org/10.1029/WR024i008p01247
  12. Johnson, P. C, Kemblowski, M. W. and Colthart, J. D., Quantitative Analysis for the Cleanuo if Hydrocarboncontaminated Soil by In-situ Soil Venting, Groundwater, 28(3), pp. 413-429 (1990) https://doi.org/10.1111/j.1745-6584.1990.tb02271.x
  13. Kovalick, W. W. and Kingscott, J., Status of Remediation Technology in the United States, Proceedings of the 2nd International Congress on Environmental Geotechnics, International Society for Soil Mechanics and Foundation Engineering and Japanese Geotechnical Society, pp. 285-300 (1996)
  14. Lambe, T. W. and Whitman, R. V., Soil Mechanics, SI Version, John Wiley & Sons, p. 553 (1986)
  15. Sabatini, D. A., Knox, R. C. and Harwell, J. H., Emerging Technologies in Surfactant-enhanced Subsurface Remediation, ACS Symposium Series 594, American Chemical Society, Washington DC., pp. 324-326 (1995)
  16. Sims, R. C., Sorenson, D., Sims, J., McLean, J., Mahmood, R., Dupont, R., Jurinak, J. and Wagner, K., Contaminated Surface Soils in-place Treatment Techniques, Pollution Technology Review, 132, pp. 298-300 (1986)
  17. Wang, C. H., Water Pollution, Scientific Publication, Beijing, p. 266 (1985)
  18. Winterkorn, H. F., The Science of Soil Stabilization, Highway Research Board Bulletin 108, pp. 1-24 (1955)