• 제목/요약/키워드: containment structure

검색결과 174건 처리시간 0.033초

Multi-scale simulation of wall film condensation in the presence of non-condensable gases using heat structure-coupled CFD and system analysis codes

  • Lee, Chang Won;Yoo, Jin-Seong;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2488-2498
    • /
    • 2021
  • The wall film-wise condensation plays an important role in the heat transfer processes of heat exchangers, refrigerators, and air conditioner. In the field of nuclear engineering, steam condensation is often utilized in safety systems to remove the core decay heat under both transient and accident conditions. In particular, passive containment cooling system (PCCS), are designed to ensure containment safety under severe accident conditions. A computational fluid dynamics (CFD) scale analysis has been conducted to calculate the heat transfer rate of the PCCS. However, despite the increase in computing power, there are challenges in the long-term transient simulation of containment using CFD scale codes. In this study, a heat structure coupling between the CFD and system analysis codes was performed to efficiently analyze PCCS. In addition, the component unstructured program for interfacial dynamics (CUPID) was improved to analyze the condensation behavior of ternary gas mixtures. Thereafter, the condensation heat transfer on the primary side was calculated using the improved CUPID and CFD code, whereas that on the secondary side was simulated using MARS. Both the coupled codes were validated against the CONAN facility database. Finally, conjugate heat transfer simulations with wall condensation in the presence of non-condensable gases were appropriately performed.

플로팅 엘엔지 복합 화물창 시스템 연구 (Research of Combined Containment System for Floating LNG)

  • 김수영;신성철;이동현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권3호
    • /
    • pp.342-347
    • /
    • 2015
  • 플로팅 엘엔지선박은 해상에서 LNG 생산 및 천연 가스 공급을 담당하는 새로운 개념으로 부유식 생산설비는 과도한 투자 비용으로 인해 개발 지연중인 한계 가스전에 활력을 주고 있으며, 부유식 공급설비는 육상 LNG 인수기지 인프라가 미비한 지역에 에너지를 경제적이며 효과적으로 공급할 수 있다는 장점을 제공하고 있다. LNG 화물창은 플로팅 엘엔지선박에서 생산 또는 적재된 LNG를 보관하는 주요기능 중 하나이다. 본 연구를 통해 기존 화물창 시스템들의 장점을 결합한 복합 화물창 시스템을 화물창 시스템의 설계 개선방안으로 제안하였고 플로팅 엘엔지선박에의 적용 타당성에 대한 연구를 수행하였다.

상시진동을 이용한 CANDU형 격납건물의 동적파라미터 산정 (Dynamic Parameter Estimation of a CANDU Type Containment Using Ambient Vibration Measurements)

  • 최상현;박수용;현창헌;김문수
    • 한국재난정보학회 논문집
    • /
    • 제8권2호
    • /
    • pp.188-196
    • /
    • 2012
  • 고유진동수와 같은 동적파라미터는 구조물 전체의 강성에 대한 정보를 제공할 수 있어 격납건물과 같은 대형구조물의 건전성 모니터링에 유용하게 사용될 수 있다. 이러한 동적특성을 구조물의 사용성에 지장을 주지 않고 추출하기 위해서는 상시진동을 이용한 모달해석 기법의 적용이 필수적이다. 이 연구에서는 상시진동 측정자료를 이용하여 월성 2호기 격납건물의 동적파라미터를 산정하였다. 연구의 가능성은 격납건물의 수치해석모델을 이용하여 검증하였다. 월성 2호기 격납건물에서 측정된 상시진동에 대한 모달해석 결과 해석모드와 충분한 상관성을 갖는 동적파라미터를 산정할 수 있었다.

납-고무받침에 의해 면진된 원전 격납구조물의 다중단계해석 (Multi-Step Analysis of Seismically Isolated NPP Containment Structures with Lead-Rubber Bearings)

  • 이진희;송종걸;이은행
    • 한국지진공학회논문집
    • /
    • 제18권6호
    • /
    • pp.261-269
    • /
    • 2014
  • In order to increase the seismic safety of nuclear power plant (NPP) structures in high seismicity regions, seismic isolation techniques can be adapted to NPP structures. In this paper, the applicability of multi-step analysis of seismically isolated NPP containment structures with lead-rubber bearings (LRB) is evaluated. The floor response spectrum of NPP containment structures with equivalent linear LRB and nonlinear LRB are compared. In addition, the force-displacement relationships for equivalent linear LRB and nonlinear LRB are compared.

LNG선박용 내조시스템 소재의 기계적 특성 및 피로강도 평가 (Evaluation of the Fatigue Strength and the Mechanical Properties for Cargo Containment System in LNG Ship)

  • 심희진;김민태;윤인수;김영균;김정규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1-6
    • /
    • 2007
  • The membrane type LNG(Liquefied Natural Gas) cargo containment system is a special design structure for the large deformation behavior at LNG temperature$(-162^{\circ}C)$. The design of membrane is required great confidence so that membrane can plat role in the tightness of flammable fluid storing. LNG cargo containment is loaded and unloaded LNG between twice and five times in a week. During this process, the membrane has large deformation behavior due to the variation of temperature and pressure to the self weight. In this study, the evaluation of the fatigue strength of membrane is very important to determine the design life of LNG storage tank and to evaluate the mechanical properties at the LNG temperature. Also, in the view point of large deformation, the evaluation method is applied conservatively $\epsilon-N_f$ curve of SUS 304L.

  • PDF

Reevaluation of failure criteria location and novel improvement of 1/4 PCCV high fidelity simulation model under material uncertainty quantifications

  • Bu-Seog Ju;Ho-Young Son
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3493-3505
    • /
    • 2023
  • Reactor containment buildings serve as the last barrier to prevent radioactive leakage due to accidents and their safety is crucial in overpressurization conditions. Thus, the Regulatory Guide (RG) 1.216 has mentioned the global strain as one of failure criteria in the free-field for cylindrical prestressed concrete containment vessels (PCCV) subject to internal pressure. However, there is a limit that RG 1.216 shows the free-field without the specific locations of failure criteria and also the global strain corresponding to only azimuth 135° has been mentioned in NUREG/CR-6685, regardless of the elevations of the structure. Therefore, in order to reevaluate the failure criteria of the 1:4 scaled PCCV, the high fidelity simulation model based on the experimental test was significantly validated in this study, and it was interesting to find that the experimental and numerical result was very close to each other. In addition, for the consideration of the material uncertainties, the Latin hypercube method was used as a statistical approach. Consequently, it was revealed that the radial displacements of various azimuth area such as 120°, 135°, 150°, 180° and 210° at elevations 4680 mm and 6,200 mm can represent as the global deformation at the free-field, obtained from the statistical approach.

A numerical approach for assessing internal pressure capacity at liner failure in the expanded free-field of the prestressed concrete containment vessel

  • Woo-Min Cho;Seong-Kug Ha;SaeHanSol Kang;Yoon-Suk Chang
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3677-3691
    • /
    • 2023
  • Since containment building is the major shielding structure to ensure safety of nuclear power plant, the structural behavior and ultimate pressure capacity of containments must be studied in depth. This paper addresses ambiguous issue of determining free-field position for liner failure by suggesting an expanded free-field region and comparing internal pressure capacities obtained by test data, conservative assumption and suggested free-field region. For this purpose, a practical approach to determine the free-field position for the evaluation of liner tearing is carried out. The maximum principal strain histories versus internal pressure capacities among different free-field positions at various azimuths and elevations are compared with those at the equipment hatch as a conservative assumption. The comparison shows that there are considerable differences in the internal pressure capacity at liner failure within the expanded free-field region compared to the vicinity of the equipment hatch. Additionally, this study proposes an approximate correlation with conservative factors by considering the expanded free-field ranges and material characteristics to determine realistic failure criteria for liner. The applicability of the proposed correlation is demonstrated by comparing the internal pressure capacities of full-scale containment buildings following liner failure criteria according to RG 1.216 and an approximate correlation.

On the Leakage Analysis of a Full Containment Tank Using a FEM

  • Kim, Chung-Kyun
    • KSTLE International Journal
    • /
    • 제7권2호
    • /
    • pp.45-50
    • /
    • 2006
  • In this paper, the leakage safety of prestressed concrete structure including the insulation panels has been analyzed using a finite element analysis just after a collapse of 9% nickel inner tank. This FEM study shows that the outer tank may contain the leaked cryogenic liquid for the time being until the primary pump in the inner tank transports stored cryogenic liquids to the nearest LNG storage tank before the outer tank is demolished. This means that the total tank thickness from the insulation panel to the outer tank system safely may retain the leaked cryogenic fluids. The FE computed results indicate that the current structure in a full containment tank is obviously enough to securing the leak-proof safety of the tank system with two primary pumps.

월성원전 구조물의 지진응답 특성 분석 (Analysis of Seismic Response Characteristics for Wolsong Nuclear Power Plant Structures)

  • 허택영
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.90-97
    • /
    • 1997
  • The purpose of this study is to evaluate the seismic response characteristics of Wolsong nuclear power plant (NPP) structures for the Kyeongju earthquake(ML=4.3) occurred on June 26, 1997. The seismograms are obtained from five accelerographs of nuclear power plant at Wolsong, Kyeongbuk. The distance from the epicenter is about 25km. The peak acceleration (PA) due to the earthquake is 0.0235g, which is far lower value than that of design basis earthquake(DBE). The PA at the containment wall is about twice as large as that at free field. Also, the higher the accelerograph is located in, the larger the PA is measured to be From the response spectrum analysis, the dominant frequency of the response is close to 4 Hz, which is similar to the free field is poor because of contamination by high frequency waves as a result of reflection and diffraction between ground and NPP structure. We are of opinion that the accelerograph at the free field should be moved approximately twice the building dimension away from the containment structure.

  • PDF