• Title/Summary/Keyword: container ship

Search Result 595, Processing Time 0.023 seconds

Dual Cycle Plan for Efficient Ship Loading and Unloading in Container Terminals (컨테이너 터미널의 효율적인 선적 작업을 위한 Dual Cycle 계획)

  • Chung, Chang-Yun;Shin, Jae-Young
    • Journal of Navigation and Port Research
    • /
    • v.33 no.8
    • /
    • pp.555-562
    • /
    • 2009
  • At container terminals, a major measurement of productivity can be work-efficiency in quay-side. At the apron, containers are loaded onto the ship and unloaded to apron by Q/C(Quay Crane). For improving the productivity of quay crane, the more efficient Y/T(Yard Tractor) operation method is necessary in container terminals. Between quay-side and yard area, current transferring methods is single-cycling which doesn't start loading unless it finishes unloading. Dual-cycling is a technique that can be used to improve the productivity of quay-side and utility of yard tractor by ship loading and unloading simultaneously. Using the dual-cycling at terminals only necessitates an operational change without purchasing extra equipment. Exactly, Y/T operation method has to be changed the dedicate system to pooling system. This paper presents an efficient ship loading and unloading plan in container terminals, which use the dual-cycling. We propose genetic and tabu search algorithm for this problem.

The Estimation of Productivity Considering New Technology Port- Equipment By Using Simulation (시뮬레이션을 활용한 신기술 항만장비의 생산성 추정)

  • Kim, Dong-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.1
    • /
    • pp.237-246
    • /
    • 2015
  • In this paper, Improved productivity models of container terminal are provided by utilizing a simulation considering Tandem-lift Quay Crane and transport vehicle of container's high productivity 'Alternative ship-to-yard vehicles.' Feature of this method is deriving the data of tandem-lift Quay Crane and Alternative ship-to-yard vehicles, estimating the productivity model of tandem-lift Quay Crane by using regression analysis. Tandem-lift Quay Crane is equipment of loading and unloading to increase productivity approximately by 2 time existing (single, twin) Quay Crane by dealing with four 20ft containers or two 40ft containers at the same. Alternative ship-to-yard vehicles can transfer containers(4TEU) more than existing Yard Tractor. This paper is deriving the optimal combination showing the highest productivity by using simulation considering Tandem-lift Quay Crane and Alternative ship-to-yard vehicles on container terminals and developing estimating model of productivity by using regression analysis using data of simulation.

Collision Analysis of Longitudinal Bulkhead of Container/RO-RO Ship with Trailer (컨테이너/로로 선 종격벽의 트레일러 충돌해석)

  • Kang, Myung-Hun;Song, In;Lee, Sang-Kyun;Kim, Sang-Kon;Cho, Sang-Rai
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.13-20
    • /
    • 2013
  • In this paper, a collision accident of a container/Ro-Ro ship was numerically analyzed. A container trailer collided with a longitudinal bulkhead of the ship in the accident, which constituted a longitudinal wall of a heavy fuel oil tank. Due to the accident, the bulkhead plate was ruptured and the heavy fuel oil spilled out of the tank. The detailed information regarding the collision velocity and the mass of the trailer was not provided. Therefore, several collision accident scenarios were constructed based upon the arrangement of the ramp way. Each collision accident scenario was analyzed to predict the extents of damage using a commercial numerical package, ABAQUS. Based on the analysis results it is proposed how to minimize the extents of damage. Through the investigations performed in this study it was found that the understandings of various damages due to collision accidents and the developments of structural design guidance against collision are necessary for the betterment of Container/RO-RO ships' performance.

  • PDF

Investigation of torsion, warping and distortion of large container ships

  • Senjanovic, Ivo;Vladimir, Nikola;Tomic, Marko
    • Ocean Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.73-93
    • /
    • 2011
  • Large deck openings of ultra large container ships reduce their torsional stiffness considerably and hydroelastic analysis for reliable structural design becomes an imperative. In the early design stage the beam model coupled with 3D hydrodynamic model is a rational choice. The modal superposition method is ordinary used for solving this complex problem. The advanced thin-walled girder theory, with shear influence on both bending and torsion, is applied for calculation of dry natural modes. It is shown that relatively short engine room structure of large container ships behaves as the open hold structure with increased torsional stiffness due to deck effect. Warping discontinuity at the joint of the closed and open segments is compensated by induced distortion. The effective torsional stiffness parameters based on an energy balance approach are determined. Estimation of distortion of transverse bulkheads, as a result of torsion and warping, is given. The procedure is illustrated in the case of a ship-like pontoon and checked by 3D FEM analysis. The obtained results encourage incorporation of the modified beam model of the short engine room structure in general beam model of ship hull for the need of hydroelastic analysis, where only the first few natural modes are of interest.

Operation of ULCS - real life

  • Prpic-Orsic, Jasna;Parunov, Josko;Sikic, Igor
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1014-1023
    • /
    • 2014
  • In this paper the real life operation of ULCS (Ultra Large Container Ships) is presented from the point of view of shipmasters. The paper provides interpretation of results of questionnaire filled by masters of large container ships during Tools for Ultra Large Container Ships (TULC) EUI FP7 project. This is done in a way that results of questionnaire are further reviewed and commented by experienced master of ULCS. Following phenomena are subject of questionnaire and further discussed in the paper: parametric rolling, slamming, whipping, springing, green water and rogue waves. Special attention is given to the definition of rough sea states as well as to measures that ship masters take to avoid them as well as to the manoeuvring in heavy seas. The role of the wave forecast and weather routing software is also discussed.

A Systematic Analysis on the Operation of Busan Container Terminal by Computer Simulation (시뮬레이션에 희한 부산컨테이너 터미널 운영의 체계적인 분석)

  • Kim Hyun;Lee Cheol-Yeong
    • Journal of Korean Port Research
    • /
    • v.2 no.1
    • /
    • pp.29-73
    • /
    • 1988
  • Since the middle of 1950's when sea transportation service by container ship was established, containerization has been rapidly spread over the world with realization of intermodalism, and becomes an index of economy growth of a country. Our country has established Pusan Container Terminal at Pusan harbour in 1978 in step with worldwide trend of containerization, and is constructing New Container Terminal at Pusan outharbour which will be completed in 1990. This paper aims to make a quantitative analysis of the Pusan Container Terminal system through the computer simulation, especially focusing on its subsystems such as ship stevedoring system, storage system and transfer system. First, the capacity of various subsystems are evaluated and it is checked whether the current operation is being performed effectively through the computer simulation. Secondly, the suggestion is presented to improve the operation by considering the throughput that Pusan Container Terminal will have to accept until 1990, when New Container Terminal will be completed. The results are as follows ; 1) As the inefficiency is due to the imbalance between various subsystems at Pusan Container Terminal on the basis of about 1.2 million TEU of container traffic, transfer equipment level must be up to 33% for transfer crane, and free period must be reduced into 4/5 days for export/import. 2) On the basis of about 1.4 million TEU of container traffic, transfer equipment level must be up to $12\%$ for gantry crane, $11\%$ for straddle carrier and $66\%$ for transfer crane, and free period must be reduced into 3/4 days for export/import. 3) On the basis of about 1.7 million TEU of container traffic, transfer equipment level must be up to $25\%$ for gantry crane, $28\%$ for straddle carrier and $100\%$ for transfer crane, and free period must be reduced into 3/4 days for export/import. 4) On the basis of about 2 million TEU of container traffic, transfer equipment level must be up to $25\%$ for gantry crane, $30\%$ for straddle carrier and $110\%$ for transfer crane, and free period must be reduced into 2/3 days for export/import, and it is necessary to enlarge storage yard.

  • PDF

Quay Crane Scheduling Considering the Workload of Yard Blocks in an Automated Container Terminal (장치장 블록의 작업부하를 고려한 안벽크레인 작업계획)

  • Lee, Seung-Hwan;Choe, Ri;Park, Tae-Jin;Kim, Kap-Hwan;Ryu, Kwang-Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.4
    • /
    • pp.103-116
    • /
    • 2008
  • This paper proposes quay crane (QC) scheduling algorithms that determine the working sequence of QCs over ship bays in a container vessel in automated container terminals. We propose two scheduling algorithms that examine the distribution of export containers in the stacking yard and determine the sequence of ship bays to balance the workload distribution among the yard blocks. One of the algorithms is a simple heuristic algorithm which dynamically selects the next ship bay based on the entropy of workloads among yard blocks whenever a QC finishes loading containers at a ship bay and the other uses genetic algorithm to search the optimal sequence of ship bays. To evaluate the fitness of each chromosome in the genetic algorithm, we have devised a method that is able to calculate an approximation of loading time of container vessels considering the workloads among yard blocks. Simulation experiments have been carried out to compare the efficiency of the proposed algorithms. The results show that our QC scheduling algorithms are efficient in reducing the turn-around time of container vessels.

  • PDF

Analysis of productivity and efficiency for mega container ships: Case of Busan Port (초대형 컨테이너 선박의 생산성 및 효율성 분석 -부산항을 중심으로-)

  • Jong-Hoon Kim;Won-Hyeong Ryu;Shin-Woo Park;Hyung-Sik Nam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.121-122
    • /
    • 2023
  • As containerized maritime transport began in earnest, the size of container ships has steadily increased, and recently, the operation of 24,000 TEU-class vessels has become regular. However, concerns about the efficiency and productivity of such mega container ships from a port operational perspective have continued to be raised. The 10th Busan International Port Conference requested an in-depth study on the trends of container ship enlargement by analyzing the order status of ultra-large container ships from major global liners. Generally, the factor that drives the upsizing of ships is the realization of economies of scale that lowers transportation costs per TEU, which leads to a higher level of cost reduction per unit transportation compared to the increase in fuel consumption due to transporting large amounts of cargo with a single ship. However, it is necessary to examine whether this trend of container vessel enlargement is feasible for port operations. To this end, this study compares and analyzes the productivity and efficeiency of different ship sizes to evaluate the effect of ship size on port operations.

  • PDF

Analysis of productivity and efficiency for mega container ships: Case of Busan Port (부산항 터미널별 선박 규모에 따른 선석 생산성 및 항만 효율성 비교분석)

  • Jong-Hoon Kim;Won-Hyeong Ryu;Shin-Woo Park;Hyung-Sik Nam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.72-73
    • /
    • 2023
  • As containerized maritime transport began in earnest, the size of container ships has steadily increased, and recently, the operation of 24,000 TEU-class vessels has become regular. However, concerns about the efficiency and productivity of such mega container ships from a port operational perspective have continued to be raised. The 10th Busan International Port Conference requested an in-depth study on the trends of container ship enlargement by analyzing the order status of ultra-large container ships from major global liners. Generally, the factor that drives the upsizing of ships is the realization of economies of scale that lowers transportation costs per TEU, which leads to a higher level of cost reduction per unit transportation compared to the increase in fuel consumption due to transporting large amounts of cargo with a single ship. However, it is necessary to examine whether this trend of container vessel enlargement is feasible for port operations. To this end, this study compares and analyzes the productivity and efficeiency of different ship sizes to evaluate the effect of ship size on port operations.

  • PDF

Risk Analysis of Container Ship Accidents and Risk Mitigation Measures

  • Kim, Dong-Jin;Kwak, Su-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.3
    • /
    • pp.259-267
    • /
    • 2016
  • The study performs a risk analysis on container ship accidents using accident data collected over the six years from 2006 to 2011, presents the resulting risk level, and suggests three risk mitigation measures to reduce the overall risk, for the safer operation of container ships. More specifically, starting from the initial accident of collision, we developed 13 different accident scenarios using event tree analysis based on which the overall risk level was obtained and presented as a FN curve. Since diverse human factors are the main cause of most of the ship accidents, our study focuses on the effect of reducing human causes on the resulting risk level. For the research we considered the injuries for the calculation of fatality with the help of MAIS. The results show that collision was the main type of accident, accounting for 62 % of all accidents, and the measures employed were proven to be effective in the sense that the risk level was much lowered and the average number of fatalities was also reduced. With more data accumulated, more precise risk level will be calculated with which the practical risk mitigating measures will be also developed. For future study, economic loss and environmental damage as consequences need to be considered.