• Title/Summary/Keyword: container model

Search Result 812, Processing Time 0.025 seconds

Study on the selection of transport route for import-export container cargo based on the sacrifice model and $CO_2$ emission (희생량 모델과 $CO_2$ 배출량에 기초한 수출입 컨테이너화물의 운송경로 선택에 관한 연구)

  • Kim S. H.;Koh C. D.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.1
    • /
    • pp.19-29
    • /
    • 2002
  • In this paper, the selection of transport route for import-export container cargo based on the sacrifice model and CO₂ emission was investigated. At first, the transportation of import-export container cargo, the transport share of each transport route, the CO₂ gas emission, the sacrifice model and the time value of import-export container cargo were investigated. And next, the selection of transport route based on the sacrifice model was investigated for the transport of import-export container cargo from Seoul to Pusan Port. Finally, the transport route was also selected by using the sacrifice model including the effect of CO₂ emission. The research results show that the transport route selection results of import-export container cargo based on the sacrifice model represents the present status of the transportation of import-export container cargo very well. And also the research results show that the reduction of transport time was very effective to increase the share of coastal transportation.

  • PDF

Development of Preliminary Design Model for Ultra-Large Container Ships by Genetic Algorithm

  • Han, Song-I;Jung, Ho-Seok;Cho, Yong-Jin
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.4
    • /
    • pp.233-238
    • /
    • 2012
  • In this study, we carried out a precedent investigation for an ultra-large container ship, which is expected to be a higher value-added vessel. We studied a preliminary optimized design technique for estimating the principal dimensions of an ultra-large container ship. Above all, we have developed optimized dimension estimation models to reduce the building costs and weight, using previous container ships in shipbuilding yards. We also applied a generalized estimation model to estimate the shipping service costs. A Genetic Algorithm, which utilized the RFR (required freight rate) of a container ship as a fitness value, was used in the optimization technique. We could handle uncertainties in the shipping service environment using a Monte-Carlo simulation. We used several processes to verify the estimated dimensions of an ultra-large container ship. We roughly determined the general arrangement of an ultra-large container ship up to 1500 TEU, the capacity check of loading containers, the weight estimation, and so on. Through these processes, we evaluated the possibility for the practical application of the preliminary design model.

A Study on Operational Efficiency Improvement of Perpendicular Layout Container Terminal via introducing Interchange Transport Model (수직형 자동화 컨테이너 터미널 운영 효율성 제고를 위한 인터체인지 이송 모델 도입 방안 연구)

  • Jang, Jae-Hwan;Lee, Jung-Yoon
    • Journal of Navigation and Port Research
    • /
    • v.44 no.3
    • /
    • pp.181-186
    • /
    • 2020
  • Until now, the development of design and operation model for automated container terminals has been mainly performed based on the western ports model, specializing in basic loading, and discharging operations. In the case of the Busan port, terminal operators provide basic stevedoring, as well as an additional logistics service known as 'On Dock Service' not suitable for the currently commercialized automated container terminal model. This study diagnosed the current Busan port's throughput structure and terminal operational characteristic, and proposed a modified perpendicular layout container terminal transport model named 'Interchange Transport Model' for effective management of empty container and operation costs. Although the 'Interchange Transport Model' requires an additional number of transport equipment (AGV), concerning operational efficiency and cost saving, a simulation showed 22% reduction of TAT and 9.4% reduction of annual terminal operational costs in comparison to the basic perpendicular layout model.

Model based Simulation of Container Loading/Unloading

  • Lee, Soon-Sup
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.170-175
    • /
    • 2012
  • Currently, most logistics use containers. The construction of new port and high speed medium size container ship for the transportation of merchandise have become very important. The problem of ship stability is also important because of its direct influence on the loss of human life, ships, and merchandise. The stability of a container ship during its operation is not a large problem because it is well considered in the design process. However, the assessment of ship stability during container loading/unloading in port still depends on the expertise of experienced personnel. In this paper, a model based simulation system is introduced, which is able to assess ship stability during container loading/unloading, using ENVISION, a general purpose simulation system.

Export Container Remarshaling Planning in Automated Container Terminals Considering Time Value (시간가치를 고려한 자동화 컨테이너 터미널의 수출 컨테이너 이적계획)

  • Bae, Jong-Wook;Park, Young-Man;Kim, Kap-Hwan
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.2
    • /
    • pp.75-86
    • /
    • 2008
  • A remarshalling is one of the operational strategies considered importantly at a port container terminal for the fast ship operations and heighten efficiency of slacking yard. The remarshalling rearranges the containers scattered at a yard block in order to reduce the transfer time and the rehandling time of container handling equipments. This Paper deals with the rearrangement problem, which decides to where containers are transported considering time value of each operations. We propose the mixed integer programming model minimizing the weighted total operation cost. This model is a NP-hard problem. Therefore we develope the heuristic algorithm for rearrangement problem to real world adaption. We compare the heuristic algorithm with the optimum model in terms of the computation times and total cost. For the sensitivity analysis of configuration of storage and cost weight, a variety of scenarios are experimented.

A Mathematical Model for an Analysis of Container Inventory under Deterministic Environment (확정적 상황에서 컨테이너 재고량 분석을 위한 수리모형)

  • 배종욱;김기영
    • Korean Management Science Review
    • /
    • v.19 no.1
    • /
    • pp.13-28
    • /
    • 2002
  • This Paper discusses how to estimate the container yard space of a port container terminal as well as how much the Inventory level of containers Is affected by related factors such as allowable dwell time for containers, handling volume per containership, and loading/unloading productivity of a port container terminal. Under the assumption of static relations among the factors, a model for estimating the container yard space is suggested. In terms of arrival patterns of containers, sub-models for export, import, and transshipment containers are constructed separately. A numerical example and the sensitivity analysis for some parameters are provided to help intuitive understanding the characteristics of the suggested model. The experimental results show that the allowable dwell time for containers is the most critical one of the factors to influence on the maximum Inventory level of containers.

The Efficiency of Container Terminals in Busan and Gwangyang Port (부산항과 광양항의 컨테이너 터미널의 효율성)

  • Mo, Su-Won;Lee, Kwang-Bae
    • Journal of Korea Port Economic Association
    • /
    • v.26 no.2
    • /
    • pp.139-149
    • /
    • 2010
  • This paper analyses the relative efficiency of 13 container terminals based on the data for the period 2003-8 to offer a fresh perspective. There has been abundant empirical research undertaken on the technical efficiency of Busan and Gwangyang port. Most studies have focused on the use of parametric and non-parametric techniques to analyse overall technical efficiency. Here, the framework assumes that terminals use two input to produce one output; the former includes container yard and container crane and the latter container volume. Jarque-Bera indicates that three variables are not normally distributed and the positive skewness shows that all the variables have long right tails. This means there are many small-scaled container terminals. This paper also employs heteroscedastic Tobit model to show the effect of the explanatory variables on the container terminal efficiencies. The Tobit model shows that both container yard and container cranes have positive effect on the container terminal efficiency, but container yard has a higher impact on the efficiency than the container crane.

Design and Implementation of the Simulator for Evaluating the Performance of Container Cranes (컨테이너크레인 성능평가를 위한 시뮬레이터 설계 및 구현)

  • Won, Seung-Hwan;Choi, Sang-Hei
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.3
    • /
    • pp.119-136
    • /
    • 2009
  • According to the increase of container flows and the appearance of large-sized container vessels, the container handling equipment in ports is evolving continuously. This research introduces the simulation model for evaluating in detail the mechanical productivity of container cranes. The model considers a single trolley and dual trolleys as the mechanism of a container crane and a single lift, a twin lift, and a tandem lift as the spreader type of it. Additionally, the detail specifications such as the dimension and the speed of a container crane are inputted and the kinematic characteristics of it are simulated. The model also considers the size of a vessel, the storage position of containers in the vessel, and the weight of containers as external physical constraints. Experimental conditions can be configured conveniently because various parameters in the model are separated. Moreover, the model can accommodate flexibly new equipment types and the changes of the existing equipment because it is designed and developed in object-oriented concept.

  • PDF

Forecasting of Container Cargo Volumes of China using System Dynamics (System dynamics를 이용한 중국 컨테이너 물동량 예측에 관한 연구)

  • Kim, Hyung-Ho;Jeon, Jun-woo;Yeo, Gi-Tae
    • Journal of Digital Convergence
    • /
    • v.15 no.3
    • /
    • pp.157-163
    • /
    • 2017
  • Forecasting container cargo volumes is very important factor for port related organizations in inversting in the recent port management. Especially forcasting of domestic and foreign container volume is necessary because adjacent nations are competing each other to handle more container cargoes. Exact forecasting is essential elements for national port policy, however there is still some difficulty in developing the predictive model. In this respect, the purpose of this study is to develop and suggest the forecasting model of container cargo volumes of China using System Dynamics (SD). The monthly data collected from Clarkson's Shipping Intelligence Network from year 2004 to 2015 during 12 years are used in the model. The accuracy of the model was tested by comparisons between actual container cargo volumes and forecasted corgo volumes suggested by the research model. The MAPE values are calcualted as 6.21% for imported cargo volumes and 7.68% for exported cargo volumes respectively. Less than 10% of MAPE value means that the suggested model is very accurate.

Estimation on the Port Container Volume in Incheon Port

  • Kim, Jung-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.33 no.4
    • /
    • pp.277-282
    • /
    • 2009
  • This paper estimated the container volumes for the Incheon port with univariate time series. As best suited models Winters' additive model, ARIMA model,and Winters' additive model were selected by import-export, coastal, and transshipment volume respectively, based on the data of monthly volume by October 2008 since January 2001. This study supposed the import-export container volumes would be decreased by 14% against that in 2008 and would have been recovered to the increasing trend of the volumes beyond the fourth quarter of 2010. The future import-export and transshipment volumes showed the increasing trend beyond 2011, while the coastal volumes would be on the stagnation. The yearly container volumes were finally forecasted as 1,705, 2,432, and 3,341 thousand TEU in 2011, 2015, and 2020 respectively.