• Title/Summary/Keyword: contactless control

Search Result 71, Processing Time 0.021 seconds

A new approach to working coil design for a high frequency full bridge series resonant inverter fitted contactless induction heater

  • Dhar, Sujit;Dutta, Biswajit;Ghoshroy, Debasmita;Roy, Debabrata;Sadhu, Pradip Kumar;Ganguly, Ankur;Sanyal, Amar Nath;Das, Soumya
    • Advances in Computational Design
    • /
    • v.2 no.4
    • /
    • pp.283-291
    • /
    • 2017
  • High frequency full bridge series resonant inverters have become increasingly popular among power supply designers. One of the most important parameter for a High Frequency Full Bridge Series Resonant Inverter is optimal coil design. The optimal coil designing procedure is not a easy task. This paper deals with the New Approach to Optimal Design Procedure for a Real-time High Frequency Full Bridge Series Resonant Inverter in Induction Heating Equipment devices. A new design to experimental modelling of the physical properties and a practical power input simulation process for the non-sinusoidal input waveform is accepted. The design sensitivity analysis with Levenberg-Marquardt technique is used for the optimal design process. The proposed technique is applied to an Induction Heating Equipment devices model and the result is verified by real-time experiment. The main advantages of this design technique is to achieve more accurate temperature control with a huge amount of power saving.

LCL Resonant Compensation of Movable ICPT Systems with a Multi-load

  • Hua, Jie;Wang, Hui-Zhen;Zhao, Yao;Zou, Ai-Long
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1654-1663
    • /
    • 2015
  • Compared to LC resonance, LCL resonance has distinct advantages such as a large resonant capability, low voltage and current stresses of the power device, constant voltage or current output characteristics, and fault-tolerance capability. Thus, LCL resonant compensation is employed for a movable Inductive Contactless Power Transfer (ICPT) system with a multi-load in this paper, which achieves constant current output characteristics. Peculiarly, the primary side adopts a much larger compensation inductor than the primary leakage inductor to lower the reactive power, reduce the input current ripple, generate a large current in the primary side, and realize soft-switching. Furthermore, this paper proposes an approximate resonant point for large inductor-ratio LCL resonant compensation through fundamental wave analysis. In addition, the PWM control strategy is used for this system to achieve constant current output characteristics. Finally, an experimental platform is built, whose secondary E-Type coils can ride and move on a primary rail. Simulations and experiments are conducted to verify the effectiveness and accuracy of both the theory and the design method.

Contactless DC Circuit Breakers Using MOS-controlled Thyristors (전력용 사이리스터 MCT를 이용한 무접점 직류차단기)

  • Sim, D.Y.;Kim, C.D.;Nho, E.C.;Kim, I.D.;Kim, Y.H.;Jang, Y.S.
    • Journal of Power System Engineering
    • /
    • v.4 no.1
    • /
    • pp.45-50
    • /
    • 2000
  • Circuit breakers have traditionally employed mechanical methods to interrupt excessive currents. According to power semiconductor technology advances in power electronic device, some mechanical breakers are replaced with solid state equivalents. Advantages of the contactors using semiconductor devices include faster fault interrupting, fault current limiting, no arc to contain or extinguish and intelligent power control, and high reliability. This paper describes the design of a static $100{\pm}10%V$ and 0 to 50A DC self-protected contactor with 85A "magnetic tripping" and 100A interruption current at $2.2A/{\mu}s$ short circuit of load condition using a new power device the HARRIS MCT (600V-75A). The self-protection circuit of this system is designed by the classical ZnO varistor for energy absorption and turn-off snubber circuit ("C" or "RCD") of the MCT.

  • PDF

Optimal MIFARE Classic Attack Flow on Actual Environment (실제 환경에 최적화된 MIFARE Classic 공격 절차)

  • Ahn, Hyunjin;Lee, Yerim;Lee, Su-Jin;Han, Dong-Guk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2240-2250
    • /
    • 2016
  • MIFARE Classic is the most popular contactless smart card, which is primarily used in the management of access control and public transport payment systems. It has several security features such as the proprietary stream cipher Crypto 1, a challenge-response mutual authentication protocol, and a random number generator. Unfortunately, multiple studies have reported structural flaws in its security features. Furthermore, various attack methods that target genuine MIFARE Classic cards or readers have been proposed to crack the card. From a practical perspective, these attacks can be partitioned according to the attacker's ability. However, this measure is insufficient to determine the optimal attack flow due to the refined random number generator. Most card-only attack methods assume a predicted or fixed random number, whereas several commercial cards use unpredictable and unfixable random numbers. In this paper, we propose optimal MIFARE Classic attack procedures with regards to the type of random number generator, as well as an adversary's ability. In addition, we show actual attack results from our portable experimental setup, which is comprised of a commercially developed attack device, a smartphone, and our own application retrieving secret data and sector key.

A Mixed-Method Approach to Explore the Motivations and Constraints of Kiosks Consumers

  • Taehyee Um;Hyunji Kim;Jumi RHee;Namho Chung
    • Asia pacific journal of information systems
    • /
    • v.32 no.1
    • /
    • pp.92-124
    • /
    • 2022
  • Providing services using kiosks is actively carried out between suppliers and consumers. These service processes have recently begun to play a dominant role in transactions. However, previous self-service technology (SST) studies or kiosks have not fully reflected the changing environment surrounding these different technologies. To cover the updated business environments, we combined qualitative and quantitative research methods. Through qualitative research and a review of previous studies, the variables emphasized as motivations and constraints for kiosks use and those that can be newly illuminated were selected for this study. We then applied the variables to the research model to assess their influence. In terms of the motivations for using kiosks, the results suggest that perceived usefulness and compatibility as service quality, forced use, and perceived service providers' efficiency as provider polices, absorptive capacity, and habit as an individual characteristic and social influence as a subjective norm have a significant effect on the attitude toward kiosks. In terms of constraints, difficult to use and need for interaction predicts the attitude toward kiosks. Attitude toward kiosks, perceived behavioral control, and social influence are directly related to the intention to use kiosks. Lastly, intention to use kiosks plays a significant role as an antecedent of revisit intention. Using these empirical results, we propose both academic and practical implications for future kiosks use.

Detecting of Periodic Fasciculations of Avian Muscles Using Magnetic and Other Multimedia Devices

  • Nakajima, Isao;Tanaka, Sachie;Mitsuhashi, Kokuryo;Hata, Jun-ichi;Nakajima, Tomo
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.293-302
    • /
    • 2019
  • In the past, there was a theory that influenza wasn't transmitted directly from birds but was infected to humans via swains. Recently, molecular level research has progressed, and it was confirmed that the avian influenza virus can directly infected to human lung and intestinal epithelial cells. Three pandemicsin the past 100 years were also infected to humans directly from birds. In view of such scientific background, we are developing a method for screening sick birds by monitoring the physiological characteristics of birds in a contactless manner with sensors. Here, the movement of respiratory muscles and abdominal muscles under autonomic innervation was monitored using a magnet and Hall sensor sewn on the thoracic wall, and other multimedia devices. This paper presents and discusses the results of experiments involving continuous periodic noise discovered during flight experiments with a data logger mounted on a Japanese pheasant from 2012 to 2015. A brief summary is given as the below: 1. Magnet and Hall sensor sewn to the left and right chest walls, bipolar electrocardiograms between the thoracic walls, posterior thoracic air sac pressure, angular velocity sensors sewn on the back and hips, and optical reflection of LEDs (blue and green) from the skin of the hips allow observation of periodic vibrations(fasciculations) in the waves. No such analysis has been reported before. 2. These fasciculations are presumed to be derived from muscle to maintain and control air sac pressure. 3. Since each muscle fiber is spatially Gaussian distributed from the sympathetic nerve, the envelope is assumed to plot a Gaussian curve. 4. Since avian trunk muscles contract periodically at all time, we assume that the sympathetic nerve dominates in their control. 5. The technique of sewing a magnet to the thoracic wall and measuring the strength of the magnetic field with a Hall sensor can be applied to screen for early stage of avian influenza, with a sensor attached to the chicken enclosure.

On the Integrated Operation Concept and Development Requirements of Robotics Loading System for Increasing Logistics Efficiency of Sub-Terminal

  • Lee, Sang Min;Kim, Joo Uk;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.85-94
    • /
    • 2022
  • Recently, consumers who prefer contactless consumption are increasing due to pandemic trends such as Corona 19. This is the driving force for developing the last mile-based logistics ecosystem centered on the online e-commerce market. Lastmile led to the continued development of the logistics industry, but increased the amount of cargo in urban area, and caused social problems such as overcrowding of logistics. The courier service in the logistics base area utilizes the process of visiting the delivery site directly because the courier must precede the loading work of the cargo in the truck for the delivery of the ordered product. Currently, it's carried out as automated logistics equipment such as conveyor belt in unloading or classification stage, but the automation system isn't applied, so the work efficiency is decreasing and the intensity of the courier worker's labor is increased. In particular, small-scale courier workers belonging to the sub-terminal unload at night at underdeveloped facilities outside the city center. Therefore, the productivity of the work is lowered and the risk of safety accidents is exposed, so robot-based loading technology is needed. In this paper, we have derived the top-level concept and requirements of robot-based loading system to increase the flexibility of logistics processing and to ensure the safety of courier drivers. We defined algorithms and motion concepts to increase the cargo loading efficiency of logistics sub-terminals through the requirements of end effector technology, which is important among concepts. Finally, the control technique was proposed to determine and position the load for design input development of the automatic conveyor system.

Micropattern Arrays of Polymers/Quantum Dots Formed by Electrohydrodynamic Jet (e-jet) Printing (이젯 프린터를 사용한 고분자/퀀텀닷 마이크로 패터닝 공정)

  • Kim, Simon;Lee, Su Eon;Kim, Bong Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.18-23
    • /
    • 2022
  • Electrohydrodynamic jet (e-jet) printing, a type of direct contactless microfabrication technology, is a versatile fabrication process that enables a wide range of micro/nanopattern arrays by applying a strong electric field between the nozzle and the substrate. In general, the morphology and the thickness of polymers/quantum dot micropatterns show a systematic dependence on the diameter of the nozzle and the ink composition with a fully automated printing machine. The purpose of this report is to provide typical examples of e-jet printed micropatterns of polymers/quantum dots to explain the effect of each process variable on the result of experiments. Here, we demonstrate several operating conditions that allow high-resolution printing of layers of polymers/quantum dots with a precise control over thickness and submicron lateral resolution.

A Study on the Restoration of Chimi Excavated the Wangheungsa Temple Site using 3D Scanning and Computer Numerical Control (3차원 스캐닝과 컴퓨터 수치 제어 기술을 이용한 왕흥사지 출토 치미의 복원 연구)

  • Park, Min Jung;Hwang, Hyun Sung;Hong, Shin Yeon
    • Journal of Conservation Science
    • /
    • v.35 no.3
    • /
    • pp.217-225
    • /
    • 2019
  • The chimi(ridge-end tile) of Wangheungsa temple is the oldest in our country. The upper part of the chimi was excavated from the southern side of Wangheungsa temple and the lower part from the northern side. These parts are considered to be portions of the same chimi, because they are similar in shape and are excavated from two sides of the same temple structure. However, the original shape of the chimi cannot be determined owing to substantial deterioration. Hence, in this study, replicas of the deteriorated chimi portions of Wangheungsa temple were fabricated by employing 3D scanning technology and the computer numerical control machining method. While observing the bending phenomenon of the chimi, the proposed model was warped realistically on the basis of the bending direction of the actual chimi. Consequently, the restoration process was modified several times. The results indicated that no gaps can be found between the upper and lower parts, and the corresponding patterns connect naturally. Furthermore, the proposed method is contactless, safe, operable, reproducible, and appropriate for restoration of artifacts. Additionally, the modeling data is semi-permanent. Hence, if modelling data is appropriately applied as per the characteristics of artifacts, it can be utilized in various fields such as virtual exhibitions, hands-on exhibitions, cultural heritage restoration, and production of teaching aids and souvenirs.

Efficient Mutual Authentication Protocol Suitable to Passive RFID System (수동형 RFID 시스템에 적합한 효율적인 상호 인증 프로토콜 설계)

  • Won, Tae-Youn;Chun, Ji-Young;Park, Choon-Sik;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.6A
    • /
    • pp.63-73
    • /
    • 2008
  • RFID(Radio Frequency IDentification) system is an automated identification system that basically consists of tags and readers and Back-End-Databases. Tags and Readers communicate with each other by RF signal. As a reader can identify many tags in contactless manner using RF signal, RFID system is expected to do a new technology to replace a bar-code system in supply-chain management and payment system and access control and medical record and so on. However, RFID system creates new threats to the security of systems and privacy of individuals, Because tags and readers communicate with each other in insecure channel using RF signal. So many people are trying to study various manners to solve these problems against attacks, But they are difficult to apply to RFID system based on EPCglobal UHF Class-1 Generation-2 tags. Recently, Chien and Chen proposed a mutual Authentication protocol for RFID conforming to EPCglobal UHF Class-1 Generation-2 tags. we discover vulnerabilities of security and inefficiency about their protocol. Therefore, We analyze vulnerabilities of their protocol and propose an efficient mutual authentication protocol that improves security and efficiency.