• 제목/요약/키워드: contact structure

검색결과 1,794건 처리시간 0.023초

플래시 발생 억제형 신발 중창 금형 개발에 관한 연구 (A Study on the Development of Shoe Midsole Mold for Flash-less)

  • 허관도;여홍태;최영
    • 한국정밀공학회지
    • /
    • 제22권1호
    • /
    • pp.109-114
    • /
    • 2005
  • In this study, to develop a flash-less mold for forming of shoe-midsole, experiments and forming analysis were carried out. In order to reduce the extra-materials, the final preform has been modified by the experiment of pressure forming at the room temperature. To measure the contact status of parting surface of mold, the pressure film has been used. The midsole mold of the wedge structure type has been developed for the improvement of the contact status. The vertical pressing mold structure was introduced for the production of a flash-less midsole. By the investigation, flash of shoe-midsole was considerably reduced.

전산모델을 이용한 에스컬레이터의 동특성 해석 (Dynamic Characteristics Analysis of an Escalator Using a Computer Model)

  • 박찬종;권이석;박태원
    • 한국정밀공학회지
    • /
    • 제16권4호통권97호
    • /
    • pp.95-101
    • /
    • 1999
  • In this paper, we propose a dynamic model of an escalator which can be used to build a design database. The model permits to estimate the forces applied to the structure by calculating three primary types of forces; the torque required to operate the escalator, the reaction forces at part interconnection points, and contact forces between parts. These forces can then be used to calculate dynamic stresses in the structure which is required to estimate the durability of the structure. Result of the computer model are compared with testing results. This simulation model is used to construct a design database. So when we design a new escalator, this design database can be used to make a new simulation model which makes it possible for us to do a Knowledge-Based-Design.

  • PDF

Fabrication of a Superhydrophobic Water-Repellent Mesh for Underwater Sensors

  • An, Taechang
    • 센서학회지
    • /
    • 제22권2호
    • /
    • pp.100-104
    • /
    • 2013
  • A superhydrophobic mesh is a unique structure that blocks water, while allowing gases, sound waves, and energy to pass through the holes in the mesh. This mesh is used in various devices, such as gas- and energy-permeable waterproof membranes for underwater sensors and electronic devices. However, it is difficult to fabricate micro- and nano-structures on three-dimensional surfaces, such as the cylindrical surface of a wire mesh. In this research, we successfully produced a superhydrophobic water-repellent mesh with a high contact angle (> $150^{\circ}$) for nanofibrous structures. Conducting polymer (CP) composite nanofibers were evenly coated on a stainless steel mesh surface, to create a superhydrophobic mesh with a pore size of $100{\mu}m$. The nanofiber structure could be controlled by the deposition time. As the deposition time increased, a high-density, hierarchical nanofiber structure was deposited on the mesh. The mesh surface was then coated with Teflon, to reduce the surface energy. The fabricated mesh had a static water contact angle of $163^{\circ}$, and a water-pressure resistance of 1.92 kPa.

A controlled destruction and progressive collapse of 2D reinforced concrete frames

  • El houcine, Mourid;Said, Mamouri;Adnan, Ibrahimbegovic
    • Coupled systems mechanics
    • /
    • 제7권2호
    • /
    • pp.111-139
    • /
    • 2018
  • A successful methodology for modelling controlled destruction and progressive collapse of 2D reinforced concrete frames is presented in this paper. The strategy is subdivided into several aspects including the failure mechanism creation, and dynamic motion in failure represented with multibody system (MBS) simulation that are used to jointly capture controlled demolition. First phase employs linear elasto-plastic analysis with isotropic hardening along with softening plastic hinge concept to investigate the complete failure of structure, leading to creation of final failure mechanism that behaves like MBS. Second phase deals with simulation and control of the progressive collapse of the structure up to total demolition, using the nonlinear dynamic analysis, with conserving/decaying energy scheme which is performed on MBS. The contact between structure and ground is also considered in simulation of collapse process. The efficiency of the proposed methodology is proved with several numerical examples including six story reinforced concrete frame structures.

Dynamic responses of structures with sliding base

  • Tsai, Jiin-Song;Wang, Wen-Ching
    • Structural Engineering and Mechanics
    • /
    • 제6권1호
    • /
    • pp.63-76
    • /
    • 1998
  • This paper presents dynamic responses of structures with sliding base which limits the translation of external loads from ground excitation. A discrete element model based on the discontinuous deformation analysis method is proposed to study this sliding boundary problem. The sliding base is simulated using sets of fictitious contact springs along the sliding interface. The set of contact spring is to translate friction force from ground to superstructure. Validity of the proposed model is examined by the closed-form solutions of an idealized mass-spring structural model subjected to harmonic ground excitation. This model is also applied to a problem of a three-story structural model subjected to the ground excitation of 1940 El Centro earthquake. Analyses of both sliding-base and fixed-base conditions are performed as comparisons. This study shows that using this model can simulate the dynamic response of a sliding structure with frictional cut-off quite accurately. Results reveal that lowering the frictional coefficient of the sliding joint will reduce the peak responses. The structure responses in little deformation, but it displaces at the end of excitation.

에피텍셜 베이스 실리콘 태양전지에서 Buried Contact 효과 (Effect of Buried Contact on the Epitaxial Base Silicon Solar Cell)

  • 장지근;임용규;정진철
    • 한국재료학회지
    • /
    • 제13권5호
    • /
    • pp.313-316
    • /
    • 2003
  • The new epitaxial base cell as a high efficiency Si solar cell was fabricated and the effect of buried contact on the cell characteristics was investigated. In our experiments, the cell with buried contact showed the open circuit voltage of 0.62 V, the short circuit current of 40 mA, the fill factor of 0.7, and the efficiency of 10% under the incident light of AM-1 100 ㎽/$\textrm{cm}^2$. The insertion of buried contact in the epitaxial base structure brought the fabricated cell to the efficiency improvement of about 33%. The cell proposed in this paper has the structural superiority in the fabrication of high efficiency solar cell due to the carrier drift transport in the optical absorption region and the formation of back surface field by $p^{-}$ $p^{+}$ epitaxial base, and the reduction of emitter series resistance by n+ buried contact.

마이크로 기둥 구조가 있는 친수성/소수성 표면에서의 겉보기 접촉 각에 대한 연구 (Apparent Contact Angle on the Hydrophilic/Hydrophobic Surfaces with Micro-pillars)

  • 유동인;도승우;곽호재;안호선;김무환;박현선
    • 한국정밀공학회지
    • /
    • 제31권2호
    • /
    • pp.171-178
    • /
    • 2014
  • In this study, the apparent contact angle on the hydrophilic/hydrophobic surfaces with micropillars was studied. The previous researches showed that the Wenzel equation and the Cassie-Baxter equation were thermodynamically derived for the rough hydrophilic/hydrophobic surfaces and generally referenced on the field of wetting phenomena. For the verification of both equations, the apparent contact angle on the hydrophilic/hydrophobic surfaces with micro-pillars was measured. In the comparison between the measured and estimated apparent contact angles with the equations, the differences between the apparent contact angles were analyzed. Conclusively, the available range and limitation of theoretical equations were investigated and further researches about the apparent contact angle on the rough surfaces were proposed.

Determination of Thermal Contact Conductance of an Injection Mold Assembly for the Prediction of Mold Surface Temperature

  • Lee, Ki-Yeon;Kim, Kyeong-Min;Park, Keun
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.1008-1012
    • /
    • 2012
  • Injection molds are fabricated by assembling a number of plates in which mold core and cavity components are inserted. The assembled structure causes a number of contact interfaces between each component where the heat transfer is affected by the thermal contact resistance. However, the mold assembly has been treated as a one body in numerical analyses of injection molding, which has a limitation in predicting the mold temperature distribution during the molding cycle. In this study, a numerical approach that considers the thermal contact effect is proposed to predict the heat transfer characteristics of an injection mold assembly. To find the thermal contact conductance between the mold core and plate, a number of finite element (FE) simulations were performed with the design of experiment (DOE) and statistical analysis. Thus, the heat transfer analyses using the obtained conductance values can provide more reliable results than conventional one-body simulations.

On the receding contact between a two-layer inhomogeneous laminate and a half-plane

  • Liu, Zhixin;Yan, Jie;Mi, Changwen
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.329-341
    • /
    • 2018
  • This paper considers the smooth receding contact problem between a homogeneous half-plane and a composite laminate composed of an inhomogeneously coated elastic layer. The inhomogeneity of the elastic modulus of the coating is approximated by an exponential function along the thickness dimension. The three-component structure is pressed together by either a concentrated force or uniform pressures applied at the top surface of the composite laminate. Both semianalytical and finite element analysis are performed to solve for the extent of contact and the contact pressure. In the semianalytical formulation, Fourier integral transformation of governing equations and boundary conditions leads to a singular integral equation of Cauchy-type, which can be numerically integrated by Gauss-Chebyshev quadrature to a desired degree of accuracy. In the finite element modeling, the functionally graded coating is divided into homogeneous sublayers and the shear modulus of each sublayer is assigned at its lower boundary following the predefined exponential variation. In postprocessing, the stresses of any node belonging to sublayer interfaces are averaged over its surrounding elements. The results obtained from the semianalytical analysis are successfully validated against literature results and those of the finite element modeling. Extensive parametric studies suggest the practicability of optimizing the receding contact peak stress and the extent of contact in multilayered structures by the introduction of functionally graded coatings.

고강도 알루미늄 합금의 프레팅 피로거동 (Fretting Fatigue Behavior of High Strength Aluminum Alloys)

  • 최성종;이학선;이철재;김상태
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.197-204
    • /
    • 2007
  • Fretting is a contact damage process that occurs between two contact surfaces. Fretting fatigue reduces fatigue strength of the material due to low amplitude oscillatory sliding and changes in the contact surfaces of strongly connected machine and structure such as bolt, key, pin, fixed rivet and connected shaft, which have relative slip of repeatedly extreme low frequency amplitude. In this research, the fretting fatigue behavior of 2024-T3511 and 7050-T7451 aluminum alloys used mainly in aircraft and automobile industry were experimentally estimated. Based on this experimental wort the following results were obtained: (1) A significant decrease of fatigue lift was observed in the fretting fatigue compared to the plain fatigue. The fatigue limit of 2024-T3511 aluminum alloy decreased about 59% while 7050-T7451 aluminum alloy decreased about 75%. (2) In 7050-T7451 specimen using ATSI4030 contact pad, crack was initiated more early stage than using 2024-T3511 contact pad. (3) In all specimens, oblique cracks were initiated at contact edge. (4) Tire tracks and rubbed scars were observed in the oblique crack region of fracture surface.