• Title/Summary/Keyword: contact process

Search Result 2,776, Processing Time 0.028 seconds

Application of Screen Printing and Photo Lithography Multi-layer Metal Contact for Single Crystalline Silicon Solar Cells (단결정 실리콘 태양전지를 위한 screen printing 전극과 photo lithography 다층전극의 적용에 대한 연구)

  • Kim, Do-Wan;Choi, Jun-Young;Lee, Eun-Joo;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.109-109
    • /
    • 2006
  • Screen printing (SP) metal contact is typically applied to the solar cells for mass production. However, SP metal contact has low aspect ratio, low accuracy, hard control of the substrate penetration and unclean process. On the other hand, photo lithograpy (PL) metal contact can reduce defects by metal contact. In this investigation, PL metal contact was obtained the multi-layer structure of Ti/Pd/Ag by e-beam process. We applied SP metal contact and PL metal contact to single crystalline silicon solar cells, and demonstrated the difference of conversion efficiency. Because PL metal contact silicon solar cell has Jsc (short circuit current density) better than silicon solar cell applied SP metal contact.

  • PDF

ANALYSIS OF ELECTROWETTING DYNAMICS WITH CONSERVATIVE LEVEL SET METHOD (레벨셋 기법을 이용한 전기습윤 현상의 동적 거동에 대한 해석)

  • Park, J.K.;Hong, J.W.;Kang, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.84-87
    • /
    • 2009
  • Electrowetting is a versatile tool to handle tiny droplets and forms a backbone of digital microfluidics. Numerical analysis is necessary to fully understand the dynamics of electrowetting, especially in designing electrowetting-based devices, such as liquid lenses and reflective displays. We developed a numerical method to analyze the general contact-line problems, incorporating dynamic contact angle models. The method is based on the conservative level set method to capture the interface of two fluids without loss of mass. We applied the method to the analysis of spreading process of a sessile droplet for step input voltages and oscillation of the droplet for alternating input voltages in electrowetting. The result was compared with experimental data. It is shown that contact line friction significantly affects the contact line motion and the oscillation amplitude. The pinning process of contact line was well represented by including the hysteresis effect in the contact angle models.

  • PDF

Formulation of the Contact Damping and its Application to the Explicit Finite Element Method (접촉감쇠의 수식화 및 외연적 유한요소법에의 적용)

  • 이상욱;양동열;정완진
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.306-312
    • /
    • 1999
  • In the recent sheet metal forming simulations, it increases to adopt the dynamic explicit method for an effective computation and the elastoplastic formulation for stress recovery. It is inevitable in the dynamic explicit method that some noises occur, which sometimes partly spoil results of simulations. This phenomenon becomes severer when complicate contact conditions are included in simulations. In commercial dynamic codes, the concept of contact damping is introduced. However, the formulation process of it is not revealed well. In this paper, a contact damping method is formulated in order for effectively suppressing noises occurring due to complicated contact conditions. This is checked by analyzing a simple sheet metal stamping process (U-draw bending). From the computational results, it is shown that the contact damping can effectively control the noises due to contacts, especially when considering the sheet thickness, and help to develop more reliable internal stress states, which result in more realistic shapes after springbank.

  • PDF

Analysis of Rolling Contact fatigue for PM-High Speed Steel by X-ray Diffraction (X선회절에 의한 분말 고속도공구강의 구름접촉피로 해석)

  • 이한영;노정균;배종수;김용진
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.44-49
    • /
    • 2000
  • Recently, PM-high speed steel(PM-HSS) has reportedly been a good alternative material for rolling mill because of its superior peformance to conventional HSS. This paper has been aimed to investigate the possibility for application to rolling contact element for PM-HSS by X-ray diffraction technique. The X-ray elastic constant for PM-HSS has been found by X-ray diffraction during the four-point bending test. Residual stress and half-value breadth on the contact surface during rolling contact fatigue process by X-ray diffraction have also been measured. The result of this study shows that the application of X-ray diffraction technique to PM-HSS could be as possible alternative material as conventional HSS. Half-value breadth on rolling contact surface by X-ray diffraction is not changed during rolling contact fatigue process. On the other hand, the residual stress is changed. This suggests that dislocation reaction has been hardly occurred in rolling contact, depending on supersaturated carbon in PM-HSS.

  • PDF

Detection of Damages in Concrete Structures Using Non-Contact Air-Coupled Sensing Methods

  • Shin, Sung-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.282-289
    • /
    • 2010
  • Most nondestructive testing techniques require good contact between the sensor and tested concrete surface to obtain reliable data. But the surface preparation is often very time and labor consuming due to the rough surface or limited access of concrete structures. One approach to speed up the data collection process is to eliminate the need for physical contact between the sensor and tested structure. Non-contact air-coupled sensing technique can be a good solution to this problem. An obvious advantage of the non-contact air-coupled sensing technique is which can greatly speed up the data collection in field and thus the damage detection process can be completed very rapidly. In this article, recent developments in non-contact air-coupled sensing technique for rapid detection of damages in concrete structures are summarized to evoke interest, discussion and further developments on this technique to a NDT research community in Korea. It is worth noting that the works in this article have been published in the types of thesis, proceedings, and journals. All published sources are cited in the text and listed in reference.

Finite Element Analysis of Powdered Magnet Sinter-Forging Processes Considering Deformable Body Contact (변형체 접촉을 고려한 분말자석 소결단조 성형공정의 유한요소 해석)

  • Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.478-484
    • /
    • 2001
  • Tube Process (TP) is a process to produce permanent magnets using a deformable tube for densification of magnet powder. This process claims that it can accomplish both densification and anisotropication in one step forming. This process is distinguished from other processes since it uses a deformable copper tube for densification of magnet powder. In this paper, simulation has been carried out for tile Tube Process in a closed die considering the compressibility of powdered material, arbitrary curved shape and deformable body contact between Nd-Fe-B magnet powder and a copper tube. Results show that the finite element analysis of the Tube Process plays an important role in the stage of preform design.

  • PDF

Sliding Friction Property of Angle Effect for Crosshatch Micro-grooved Pattern under Lubricated (마이크로 크기를 가지는 빗살무늬 그루우브 패턴의 빗살각도변화에 대한 실험적 마찰특성)

  • Kim, Seock-Sam;Chae, Youn-Ghun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.94-99
    • /
    • 2011
  • Micro-scale surface pattern has an benefit of tribological application under lubricated sliding contact. Therefore, a special pattern, that has to reduce the coulomb friction under contact, is considered to be necessary for improved efficiency of machines. The current study investigated the friction property of angle effect for micro-scale grooved crosshatch pattern on bearing steel surface using pin-on-disk type. The samples fabricated by photolithography process and then these are carry out the electrochemical etching process. We discuss the friction property due to the influence of hatched-angle on contact surface. We could be explained the lubrication mechanism for a Stribeck curve. It was found that the friction coefficient depend on an angle of the crosshatch on contact surface. It was thus verified that micro-scale crosshatch grooved pattern could affect the friction reduction.

Development of CAD Software for Automatic Design of Disk-Typed Cams-Part I : Iterative Contact Method (디스크형 캠의 자동설계용 CAD S/W 개발-Part I :설계 및 해석 알고리즘 개발)

  • Son, Ju-Ri;Sin, Jung-Ho
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.149-154
    • /
    • 1989
  • Generally Cam-Follower systems consist of two elements: Cam is for rotating motion and follower for reciprocating motion. Depending on the shape of cam and type of follower, the motion of cam-follower system is determined. Thus design process and analysis process must be well defined. The design process means to find the coordinates of cam shape which can be defined the given motion of follower and the analysis process means to determine the motion curve of follower corresponding to the given cam based on the dimensions of a cam-follower system. This paper consists of two parts: One is development of a numerical method for design and analysis of cam-follower systems, the other is for development of a CAD program and its application. As the first part of the paper, an iterative contact method is proposed. This method can calculate the contact points between cam and roller and determine their contact angles iteratively. The second part of the paper presents the structure of a CAD program and its availability to the industrial applications.

  • PDF

Optimization of the firing process condition for high efficiency solar cells on single-crystalline silicon (고효율 Solar Cell 제조를 위한 Firing 공정 조건의 최적화)

  • Jeong, Se-Won;Lee, Seong-Jun;Hong, Sang-Jin;Han, Seung-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2006.10a
    • /
    • pp.4-5
    • /
    • 2006
  • This paper represents modeling and optimization techniques for solar cell process on single-crystalline float zone (FZ) wafers with high efficiency; There were the four significant processes : i)emitter formation by diffusion, anti-reflection-coating (ARC) with silicon nitride using plasma-enhanced chemical vapor deposition (PECVD); iii)screen-printing for front and back metallization; and iv)contact formation by firing. In order to increase the performance of solar cells, the contact formation process is modeled and optimized. This paper utilizes the design of experiments (DOE) in contact formation to reduce process time, fabrication costs. The experiments were designed by using central composite design which is composed of $2^4$ factorial design augmented by 8 axial points with three center points. After contact formation process, the efficiency of the solar cell is modeled using neural networks. This model is used to analyse the characteristics of the process, and to optimize the process condition using genetic algorithms (GA). Finally, find optimal recipe for solar cell efficiency.

  • PDF

Contact oxide etching using $CHF_3/CF_4$ ($CHF_3/CF_4$를 사용한 콘택 산화막 식각)

  • 김창일;김태형;장의구
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.774-779
    • /
    • 1995
  • Process optimization experiments based on the Taguchi method were performed in order to set up the optimal process conditions for the contact oxide etching process module which was built in order to be attached to the cluster system of multi-processing purpose. In order to compare with Taguchi method, the contact oxide etching process carried out with different process parameters(CHF$_{3}$/CF$_{4}$ gas flow rate, chamber pressure, RF power and magnetic field intensity). Optimal etching characteristics were evaluated in terms of etch rate, selectivity, uniformity and etched profile. In this paper, as a final analysis of experimental results the optimal etching characteristics were obtained at the process conditions of CHF3/CF4 gas flow rate = 72/8 sccm, chamber pressure = 50 mTorr, RF power = 500 watts, and magnetic field intensity = 90 gauss.

  • PDF