• Title/Summary/Keyword: contact problem

Search Result 987, Processing Time 0.026 seconds

Analysis of Dynamic Behaviors for the Korea High Speed Train(KHST) by Using Non-Linear Creep Theory (비선형 크립이론을 이용한 한국형 고속전철의 동특성 해석)

  • 박찬경;김석원;김회선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1093-1098
    • /
    • 2002
  • Dynamic behaviors of the Korean High-speed Train(KHST) have been analyzed to investigate the performance on the stability, the safety and the ride comfort. Multi-body dynamics analysis program using Recursive method, called RecurDyn, have been employed in the numerical simulation. To model the wheel-rail contact, the RecurDyn uses its built-in module which uses the square root creep law. The accuracy of the rail module in RecurDyn. however, decreases in the analysis of flange contact because it linearizes the shape of the wheel and rail. To solve this problem, a nonlinear contact theory have been developed that considers the profiles of the wheel and rail. The results show that the KHST still needs more stability. The problem should be solved by the examinations of module and modeling.

  • PDF

The study on wheel wear analysis in UIC60 and KS50N of Korea High Speed Railway (한국형 고속철도의 전용선과 기존선의 차륜 마모 특성 연구)

  • Kim Youn-Jung;Choi Jeong-Heum;Han Dong-Chul;Kim Young-Gukk
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1115-1120
    • /
    • 2005
  • characteristic of wear between wheel and rail is important factor of judgement to maintenance. KHST is optimized on an exclusive rail, UIC60. but also KHST is running on the variety existing line as well as KS50N, KS60 et,c. Hail profile of KS50N is dissimilar to DIC60. So we can predict that characteristic of wear is embodied also different. In this paper. we deduced the force and point of contact position between wheel and rail through multi-dynamics analysis and predicted wear of wheel and rail through contact problem analysis. we used simplified theory of kallker on contact problem, and Predicted the wear phenomenon of wheel using archard wear equation about each condition.

  • PDF

Contact problem for a stringer plate weakened by a periodic system of variable width slots

  • Mir-Salim-zada, Minavar V.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.719-724
    • /
    • 2017
  • We consider an elastic isotropic plate reinforced by stringers and weakened by a periodic system of rectilinear slots of variable width. The variable width of the slots is comparable with elastic deformations. We study the case when the slots faces get in contact at some area. Determination of parameters characterizing the partial closure of variable width slots is reduced to the solution of a singular integral equation. The action of the stringers is replaced with unknown equivalent concentrated forces at the points of their connection with the plate. The contact stresses and contact zone sizes are found from the solution of the singular integral equation.

Contact Frce Cotrol of Root Hnd using VSS

  • Sim, Kwee-Bo;Hashimoto, Hideki;Harashima, Fumio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1080-1084
    • /
    • 1989
  • The motion of an workpiece to be manipulated is determined by the forces applied to the workpiece. During the contact between the robot hand and the workpiece, impulsive forces may dominate all other forces, and determine the ultimate success or failure of a task. Therefore, one of the important problems in the robot hands is the control of the initial impact force. In this paper, the problem of the force control of robot hand under system with contact force is presented. The principle of energy can be applied in the modelling of the impact force. In order to achieve stable contact and avoid bounces and vibrations, VSS is adopted in the design of the contact force controller. Some simulations are carried out for a pushing operation to control the contact force.

  • PDF

Dynamic Contact of a Cantilever Beam with Rigid Wall Condition (강체벽과 충돌하는 외팔보의 진동)

  • Jang, Young-Ki;Kim, Jae-Ik;Kim, Kyu-Tae;Park, Nam-Gyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1255-1261
    • /
    • 2005
  • The dynamic contact model of a beam that contacts to a rigid wall in a reactor core was studied. The gap between the beam and contact wall results in dynamic contact accompanying inequality constraints. The inequality constraints can be relieved to an equality constraint problem by introducing a convex Penalty function. In this work, a beam with contact condition is formulated using quasi-convex penalty function and numerically solved. General coordinate solution is adopted to raise computational efficiency. Also nonlinearity is examined In the beam contacting to a rigid wall.

A new approach for finite element analysis of delaminated composite beam, allowing for fast and simple change of geometric characteristics of the delaminated area

  • Perel, Victor Y.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.501-518
    • /
    • 2007
  • In this work, a new approach is developed for dynamic analysis of a composite beam with an interply crack, based on finite element solution of partial differential equations with the use of the COMSOL Multiphysics package, allowing for fast and simple change of geometric characteristics of the delaminated area. The use of COMSOL Multiphysics package facilitates automatic mesh generation, which is needed if the problem has to be solved many times with different crack lengths. In the model, a physically impossible interpenetration of the crack faces is prevented by imposing a special constraint, leading to taking account of a force of contact interaction of the crack faces and to nonlinearity of the formulated boundary value problem. The model is based on the first order shear deformation theory, i.e., the longitudinal displacement is assumed to vary linearly through the beam's thickness. The shear deformation and rotary inertia terms are included into the formulation, to achieve better accuracy. Nonlinear partial differential equations of motion with boundary conditions are developed and written in the format acceptable by the COMSOL Multiphysics package. An example problem of a clamped-free beam with a piezoelectric actuator is considered, and its finite element solution is obtained. A noticeable difference of forced vibrations of the delaminated and undelaminated beams due to the contact interaction of the crack's faces is predicted by the developed model.

Stress and temperature analysis of a drum brake using FEM (유한요소법을 이용한 드럼브레이크의 응력 및 온도 해석)

  • 함선균;이기수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.707-710
    • /
    • 2001
  • Brakes are one of the important safety parts in cars. The requirements of brakes in performance, in comfort, and working lifetime are high. This paper presents the static analysis on the stress and temperature of a automotive drum brake. The particular interest is the distribution of the contact pressure between brake lining and drum. The problems to be solved are the effects of friction coefficient, actuation force, temperature, and brake component's stiffness. The contact problem includes friction, and is solved using the ABAQUS.

  • PDF

The wheel wear prediction of a Korea High Speed Train using a FE-analysis (유한요소해석을 이용한 한국형 고속철도 차량의 차륜 마모 예측)

  • Choi Jeong Heum;Han Dong-Chul;Kim Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.409-414
    • /
    • 2005
  • It is difficult to apply the Hertz theory to the wheel-rail contact problem which has the complicated geometric form and plastic deformation. Therefore, we perform the elastic-plastic FE analysis and compare the results with those of Hertz theory. Kalker's simplified theory of rolling contact is used to discretize the contact patches and calculate local traction and slip. The wear volumes are calculated using Archard wear equation.

  • PDF

Elastohydrodynamic Lubrication on the Vane Tip of Vane Pump (베인 선단부의 탄성유체윤활)

  • 정석훈;정재연
    • Tribology and Lubricants
    • /
    • v.10 no.3
    • /
    • pp.54-61
    • /
    • 1994
  • The regimes of elastohydrodynamic lubrication at the points where line contacts occur between the vane tip and camring in an oil hydraulic vane pump is studied. A study of the contact conditions in vane pump provided most of the early interest in the possibility of fluid film lubrication in highly loaded contacts. The variation of viscosity with pressure and the elastic deformation associated with the high pressures generated in the contact region are the major causes of the complexity attributed to lubrication behavior. Therefore a numerical solutions to the problem of elastohydrodynamic lubrication of line contact are obtained by using a finite-difference formulation.

A Solution of Variational Inequalities and A Priori Error Estimations in Contact Problems with Finite Element Method (접촉문제에서의 변분부등식의 유한요소해석과 A Priori 오차계산법)

  • Lee, Choon-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2887-2893
    • /
    • 1996
  • Governing equations infrictional contact problems are introduced using variational inequality formulations which are regularized to overcome the diffculties of non-differentiability of the friction functional. Also finite element approximations and a priori error estimations are derived based on those formulations. Numerical simulations are performed illustrating the theoretical results.