• Title/Summary/Keyword: contact pressures

Search Result 142, Processing Time 0.027 seconds

On the receding contact between a two-layer inhomogeneous laminate and a half-plane

  • Liu, Zhixin;Yan, Jie;Mi, Changwen
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.329-341
    • /
    • 2018
  • This paper considers the smooth receding contact problem between a homogeneous half-plane and a composite laminate composed of an inhomogeneously coated elastic layer. The inhomogeneity of the elastic modulus of the coating is approximated by an exponential function along the thickness dimension. The three-component structure is pressed together by either a concentrated force or uniform pressures applied at the top surface of the composite laminate. Both semianalytical and finite element analysis are performed to solve for the extent of contact and the contact pressure. In the semianalytical formulation, Fourier integral transformation of governing equations and boundary conditions leads to a singular integral equation of Cauchy-type, which can be numerically integrated by Gauss-Chebyshev quadrature to a desired degree of accuracy. In the finite element modeling, the functionally graded coating is divided into homogeneous sublayers and the shear modulus of each sublayer is assigned at its lower boundary following the predefined exponential variation. In postprocessing, the stresses of any node belonging to sublayer interfaces are averaged over its surrounding elements. The results obtained from the semianalytical analysis are successfully validated against literature results and those of the finite element modeling. Extensive parametric studies suggest the practicability of optimizing the receding contact peak stress and the extent of contact in multilayered structures by the introduction of functionally graded coatings.

Solving the contact problem of functionally graded layers resting on a HP and pressed with a uniformly distributed load by analytical and numerical methods

  • Yaylaci, Murat;Sabano, Bahar Sengul;Ozdemir, Mehmet Emin;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.401-416
    • /
    • 2022
  • The aim of this study is to examine the frictionless double receding contact problem for two functionally graded (FG) layers pressed with a uniformly distributed load and resting on a homogeneous half plane (HP) using analytical and numerical methods. The FG layers are made of a non-homogeneous material with an isotropic stress-strain law with exponentially varying properties. It is assumed that the contact at the FG layers and FG layer-HP interface is frictionless. The body force of the FG layers and homogeneous HP are ignored in the study. Firstly, an analytical solution for the contact problem has been realized using the theory of elasticity and the Fourier integral transform techniques. Then, the problem modeled and two-dimensional analysis was carried out by using the ANSYS package program based on FEM. Numerical results for contact lengths and contact pressures between FG layers and FG layer-HP were provided for various dimensionless quantities including material inhomogeneity, distributed load width, the shear module ratio, and the heights of the FG layers for both methods. The results obtained using FEM were compared with the results found using the analytical formulation. It was found that the results obtained from analytical formulation were in perfect agreement with the FEM study.

Relationship between atrial pressures and the interventricular pressure in the moving actuator type total artificial heart (심실간 공간 압력을 이용한 이동작동기형 완전이식 인공심장에서의 좌, 우심방압 추정)

  • Jo, Y.H.;Choi, W.W.;Park, S.K.;Choi, J.S.;Lee, J.J.;Om, K.S.;Kim, H.C.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.88-90
    • /
    • 1996
  • The right and left atrial pressures are important parameters in automatic control of a total artificial heart (TAH) within normal physiological ranges. Our TAH is composed of a moving actuator, right and left ventricles and the interventricular space enclosed by a semi-rigid housing. During operation of the TAH, the jnterventpicular space's volume is changed dynamically by the difference between the ejection volume of one ventricle and the inflow volume of the other. Therefore, the changes in pressure of the interventricular space is related to both atrial pressures. We measured the interventricular pressure (IVP) waveform using a pressure sensor and attempted to indirectly estimate the changes of atrial pressures. This method has an advantage that the sensor does not contact the blood directly. Furthermore, the IVP waveforms have its zero baseline in each pump cycle, thus the pressure measurements are free from the transducer drift problems by measuring the peak pressure from these baseline values. From the In vitro experiments, we found that the IVP waveform contained several useful parameters such as negative peak, dP/dT on the initial break, the area enclosed by the profile in each stroke, which are associated with atrial pressures and the filling conditions of the ventricles. The measured atrial pressures were linearly related to the negative peak of the interventricular pressure.

  • PDF

The Biomechanical Evaluation of Functional Insoles (기능성 인솔유형들의 생체역학적 평가)

  • Kim, Eui-Hwan;Cho, Hyo-Kyu;Jung, Tae-Woon;Kim, Sung-Sup;Chung, Jae-Wook
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.3
    • /
    • pp.345-353
    • /
    • 2010
  • The purpose of this study was to compare and biomechanical evaluate the effects of three varying functional insoles on the kinematics of the lower extremities and foot pressure distribution during gait. For this 12 subjects participated in this study and each worn the 3 functional insoles during gait which kinematics, kinetics, electromyography and foot pressures were recorded. The function on the first insole was to absorb shock and increase the dynamic stability, the second was a gel type to absorb shock, and the third was to massage the center regions of the foot sole. the results were as follows; the first insole reduced the joints range of motion and reduced muscular fatigue, the second insole reduce the maximum, total and average foot pressures. Finally, the third insole produced larger values for the contact times and contact area.

A Study on Thermal Stability of the Non-insulated HTS Racetrack-type Coil Under Various External Pressures Applied to Straight Sections (무절연 고온 초전도 레이스트랙형 코일의 직선구간 압력변화에 따른 열적 안정성 연구)

  • Kwon, O.J.;Kim, K.L.;Choi, Y.H.;Yang, D.G.;Kim, Y.G.;Lee, T.S.;Ko, T.K.;Lee, H.G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.33-37
    • /
    • 2012
  • An HTS racetrack-type coil without turn-to-turn insulation was characterized by critical current, sudden discharge, and over-current tests with respect to external pressures applied to the straight sections of the coil. The thermal stability of the non-insulated HTS racetrack-type coil was remarkably enhanced with increasing external pressure applied to the straight sections of racetrack-type coil. Furthermore, over-current test results confirmed that the non-insulated HTS racetrack-type coil with increased turn-to-turn thermal contact has the potential to be manufactured into field coils of HTS wind turbine generators with highly enhanced thermal and electrical stabilities.

Ultrasonic Evaluation of Interfacial Stiffness for Nonlinear Contact Surfaces

  • Kim, Noh-Yu;Kim, Hyun-Dong;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.504-511
    • /
    • 2008
  • This paper proposes an ultrasonic measurement method for measurement of linear interfacial stiffness of contacting surface between two steel plates subjected to nominal compression pressures. Interfacial stiffness was evaluated by using shear waves reflected at contact interface of two identical solid plates. Three consecutive reflection waves from solid-solid surface are captured by pulse-echo method to evaluate the state of contact interface. A non-dimensional parameter defined as the ratio of their peak-to-peak amplitudes are formulated and used to calculate the quantitative stiffness of interface. Mathematical model for 1-D wave propagation across interfaces is developed to formulate the reflection and transmission waves across the interface and to determine the interfacial stiffness. Two identical plates are fabricated and assembled to form contacting surface and to measure interfacial stiffness at different states of contact pressure by means of bolt fastening. It is found from experiment that the amplitude of interfacial stiffness is dependent on the pressure and successfully determined by employing pulse-echo ultrasonic method without measuring through-transmission waves.

Stress Intensity Factors and Possible Crack Propagation Mechanisms for a Crack Surface in a Polyethylene Tibia Component Subject to Rolling and Sliding Contact (구름마찰 접촉하중시 Polyethylene Tibia 표면균열의 응력확대계 수와 복합전파거동에 관한 연구)

  • Kim, Byung-Soo;Moon, Byung-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2019-2027
    • /
    • 2003
  • Pitting wear is a dominant from of polyethylene surface damage in total knee replacements, and may originate from surface cracks that propagate under repeated tribological contact. In this study, stress intensity factors, K$\_$I/and $_{4}$, were calculated for a surface crack in a polyethylene-CoCr-bone system under the rolling and/or sliding contact pressures. Crack length and load location were considered in determination of probable crack propagation mechanisms and fracture modes. Positive K$\_$I/ values were obtained for shorter cracks in rolling contact and for all crack lengths when the sliding load was apart from the crack. $_{4}$ was the greatest when the load was directly adjacent to the crack (g/a=${\pm}$1). Sliding friction caused a substantial increase of both K$\_$I/$\^$max/ and $_{4}$$\^$max/. The effective Mode I stress intensity factors, K$\_$eff/, were the greatest at g/a=${\pm}$1, showing the significance of high shear stresses generated by loads adjacent to surface cracks. Such behavior of K$\_$eff/ suggests mechanisms for surface pitting by which surface cracks may propagate along their original plane under repeated rolling or sliding contact.

Study for Possible Crack Propagation Mechanisms for a Surface Cracked in a Polyethylene Tibia Component Subject to Rolling and Sliding Contact (구름마찰접촉하중 시 Polyethylene tibia 요소의 표면균열 복합전파 거동에 관한 연구)

  • Kim, B.S.;Moon, B.Y.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1222-1227
    • /
    • 2003
  • Pitting wear is a dominant form of polyethylene surface damage in total knee replacements, and may originate from surface cracks that propagate under repeated tribological contact. In this study, stress intensity factors, $K_{I}$ and $K_{II}$, were calculated for a surface crack in a polyethylene - CoCr - bone system under the rolling and/or sliding contact pressures. Crack length and load location were considered in determination of probable crack propagation mechanisms and fracture modes. Positive $K_{I}$ values were obtained for shorter cracks in rolling contact and for all crack lengths when the sliding load was apart from the crack. $K_{II}$, was the greatest when the load was directly adjacent to the crack $(g/a={\pm}1)$. Sliding friction caused a substantial increase of both $K_{I}^{max}$ and $K_{II}^{max}$. The effective Mode I stress intensity factors, $K_{eff}$, were the greatest at $g/a={\pm}1$, showing the significance of high shear stresses generated by loads adjacent to surface cracks. Such behavior of $K_{eff}$ suggests mechanisms for surface pitting by which surface cracks may propagate along their original plane under repeated rolling or sliding contact.

  • PDF

Design of isolated footings of circular form using a new model

  • Rojas, Arnulfo Luevanos
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.767-786
    • /
    • 2014
  • This paper presents the design of reinforced concrete circular footings subjected to axial load and bending in two directions using a new model. The new model considers the soil real pressure acting on contact surface of the circular footings and these are different, with a linear variation in the contact area, these pressures are presented in terms of the axial load, moments around the axis "X" and the axis "Y". The classical model takes into account only the maximum pressure of the soil for design of footings and it is considered uniform at all points of contact area. Also, a comparison is presented in terms of the materials used (steel and concrete) between the two models shown in table, being greater the classical model with respect the new model. Therefore, the new model is the most appropriate, since it is more economic and also is adjusted to real conditions.

Analysis on retaining ring shrink-fitted on rotor body in 2-pole generator (2극 발전기의 리테이닝 링 열 박음 해석)

  • Hwang, Suk-Hwan;Choi, Jae-Seung
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.849-853
    • /
    • 2000
  • The retaining rings used to restrain the end turns of the rotor winding against centrifugal force require very careful attention during design and manufacture because they have traditionally been the highest-stressed components of the generator. In other words, the rings maintain their shrink fits during their entire service life. In this study, using finite element method, the part of shrink fits in generator was analyzed to obtain residual stresses in retaining ring and contact Pressures between contact surfaces at zero, rated, and 120 rated speeds, respectively.

  • PDF