• Title/Summary/Keyword: contact length

Search Result 752, Processing Time 0.03 seconds

Analysis of an Elastomeric O-ring Seal Compressed and Highly Pressurized Under One-sided Laterally Constrained (단 측벽 구속하에서 압축 및 고압을 받는 고무 오링의 해석)

  • Park, Sung-Han;Kim, Jae-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.13-20
    • /
    • 2007
  • Elastomeric O-ring seals are widely used in static and dynamic applications. A compressed and highly pressurized O-ring seal inserted under laterally one-sided constrained condition has been analyzed experimentally and numerically. The deformed shape and extrusion length of the O-ring under high pressure has been measured by the computed tomography. Through the comparison of experimental and FE results, the numerical analysis technique has been verified. Using verified FE method, the contact stress profiles at sealing surfaces have been investigated and their relevance to the 0-ring performance evaluated based on stress-related and displacement-related parameters. It has been found that the contact stress profiles and deformation behaviors of the seal are affected by friction coefficient, gap clearance, and pressure considerably.

Rational designing of double-sided nail plate joints using the finite element method

  • Zhou, Tinozivashe;Guan, Z.W.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.239-257
    • /
    • 2008
  • Double-sided punched metal plate timber fasteners present projections on both sides, which offer improved joint fire resistance and better joint aesthetics. In this paper, 3-D nonlinear finite element models were developed to simulate double-sided nail plate fastener timber joints. The models, incorporating orthotropic elasticity, Hill's yield criterion and elasto-plasticity and contact algorithms, are capable of simulating complex contact between the tooth and the timber and between the base plate and the timber in a fastener. Using validated models, parametric studies of the double-sided nail plate joints was undertaken to cover the tooth length and the tooth width. Optimal configuration was assumed to have been attained when increase in nail plate tooth width did not result in a raise in joint capacity, in conjunction with the optimum tooth length. This paper presents the first attempt to model and optimise tooth profile of double-sided nail plate fastener timber joints, which offers rational designs of such fasteners.

Development of Mirror~like Polishing System for Hemispherical High-¬speed Precision Bearing for Digital VTR Drum (디지탈 VTR 드럼용 반구 고속 정밀베어링의 경면연마 시스템)

  • 김정두;최민석;우기명;김영일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.24-28
    • /
    • 1996
  • Mirror-like polishing system of hemisphericall high-speed precision bearing for digital VTR drum was developed. Mechamism of the polishing process was analyzed in the view point of polishing contact range and contact length between the tool and the workpiece surface. It was suggested that the two stage polishing process adoptiong the diamond grinding wheel and polishing tool instead of multistage lapping processes, which enables the mass production of the bearing by reduction of polishing time.

  • PDF

A Suggestion for Improvement of Hanger length adjusting method in Trolley Wire Line (전차선로 행거의 길이조절방식 개선방안)

  • Kim Gyun-Sig;Park Han-Cheol;Park Han-Yong;Cha Kwang-Seok
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.730-735
    • /
    • 2005
  • In this thesis, As electric railway vehicle's speed becomes faster and faster and functional, the conditions of operation (or running condition) of the vehicle also become complicated and diverse. As the number of electric vehicle increases by enhancement of the running condition, problems are also raised in circulation current, vibration and unstable contact caused by equipment(sporting part for making horizontal between Trolley wire and Messenger wire) and troubles in Ark by un secure contact. This articles shows a method to prevent or to have least problem of vibration, and unstable contact by having constant height of Trolley wire through adjusting the length of Hanger.

  • PDF

Micro/Nano Adhesion and Friction Properties of Mixed Self-assembled Monolayer (혼합 자기 조립 단분자막의 마이크로/나노 응착 및 마찰 특성)

  • Yoon Eui-Sung;Oh Hyun-Jin;Han Hung-Gu;Kong Hosung;Jhang Kyung Young
    • Tribology and Lubricants
    • /
    • v.20 no.2
    • /
    • pp.51-57
    • /
    • 2004
  • Micro/nano adhesion and friction properties of mixed self-assembled monolayer (SAM) with different chain length for MEMS application were experimentally studied. Many kinds of SAM having different spacer chains(C6, C10 and C18) and their mixtures (1:1) were deposited onto Si-wafer, where the deposited SAM resulted in the hydrophobic nature. The adhesion and friction properties between tip and SAM surfaces under nano scale applied load were measured using an atomic force microscope (AFM) and under micro scale applied load were measured using ball-on-flat type micro-tribotester. Surface roughness and water contact angles were measured with SPM (scanning probe microscope) and contact anglemeter. Results showed that water contact angles of mixed SAMs were similar to those of pure SAMs. The morphology of coating surface was roughened as mixing of SAM. Nano adhesion and nano friction decreased as increasing of the spacer chain length and mixing of SAM. Micro friction was decreased as increasing of the spacer chain length, but micro friction of mixed SAM showed the value between pure SAMs. Nano adhesion and friction mechanism of mixed SAM was proposed in a view of stiffness of spacer chain modified chemically and topographically.

Optimal Design of Thin Type Ultrasonic Motor (박형 초음파모터의 최적 설계)

  • Jeong, Seong-Su;Jun, Ho-Ik;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.335-340
    • /
    • 2008
  • In this study, novel structured thin ultrasonic rotary motor has been proposed. Ultrasonic motors are based on an elliptical motion on the surface of elastic body. Thin brass plate was used as a cross shaped vibrator and eight ceramic plates were attached on upper side and bottom side of the brass plate. From the thin stator, elliptical displacements of the four contact tips were obtained. To find the optimal size of the stator, motions of the motors were simulated using ATILA by changing length, width and thickness of the ceramics. The stators had commonly three resonance peaks and contact tips of the stator moved on tangential or normal trajectories at these resonance peaks. The maximum displacements at the resonance peaks were compared. As results, maximum displacements of the contact tips were obtained at the length of 16 mm, width of 6 mm and thickness of 0.4 mm. Changes of the resonance frequencies were inversely proportional to the length of ceramic and proportional to the width of ceramic. The motor was fabricated by using the designed stator. And, the characteristics of the motor were compared with the simulated results. When the motor was fabricated with these results, speed fo 935 rpm was obtained by input voltage of 25 Vrms at 93.5 kHz.

The Effect of the Streamlined Shoe on Dynamic Gait Change and Foot Plantar Pressure in Healthy Young Adults

  • Shim, Jae-Hun;Koong, Hwa-Soo;Chon, Seung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.489-494
    • /
    • 2013
  • Objective: This study compared the effects of streamlined shoes on dynamic gait and foot plantar pressure in healthy young adults. Background: With the importance of ankle and lower extremity mechanism, streamlined shoes are contributing to a static gait factors. However, the study of dynamic gait factor is still insufficient. Method: Sixty subjects were randomly allocated to two groups: experimental group(n=30) and control(n=30), respectively. The experimental group performed streamlined shoes, whereas the control group applied usual shoes. Main outcome measurements were assessed contact time, step length and foot plantar pressure using gait analysis with the treadmill. Independent t-test was used to compare the both groups. Results: Compared with control group, contact time of forefoot, midfoot and hindfoot decreased significantly in experimental group(p<.05), Step length increased significantly in experimental group(p<.05). Foot plantar pressure of midfoot and hindfoot increased significantly in experimental group(p<.05), whereas that of forefoot did not show significantly in experimental group(p>.05). Conclusion: Our findings suggest that streamlined shoes was more effective than usual shoes in dynamic gait change including contact time and step length and foot plantar pressure in healthy young adults. Application: The results of streamlined shoes might help to control for the gait of industrial workers.

Characteristics of tool wear in cutting of glass fiber reinforced platics (GFRP) (유리섬유 강화 플라스틱 절삭에서의 공구마멸특성)

  • 이원평
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.49-56
    • /
    • 1987
  • This paper is a study on the effect of the cutting speed on the tool wear in turning of the glass fiber reinforced plastics. The wear behavior of cutting tool is studied by means of turning, changing the cutting speed and feed in the wide range. Moreover, the theoretical model applicable to the cutting speed of wide range is analysed. The main results obtained are as follows: The relation between the tool wear and the cutting speed is divided into three range in case of the constant cutting distance. 1) At the low cutting speed, the tool wear is independent of the cutting speed, but dependent mainly on the contact length between tool and glass fiber(lst range). 2) At the high cutting speed, the tool wear is independent of the contact length, and dependent on the cutting speed only(2nd range). The tool wear increases in proportion to the cutting speed. 3) At the higher cutting speed than the speed in the 2nd range, the tool wear is independent both of the cutting speed and the contact length(3rd range). 4) In the 3rd range, tool flank wear is constant and is observed that only the wear of cutting edge increases.

  • PDF

A Study on the Method of Resistance Analysis of Water Stream During Fire Supperession (화재진압 시 발생하는 주수 기둥의 저항분석 방법 연구)

  • Jung, Byeong-Sun;Kim, Eung-Sik;Park, Jong-Yeol
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.22-27
    • /
    • 2018
  • Fire fighters are exposed to the risk of many accidents during fire suppression, especially near the high voltage circuit. In order to prevent and analyze the electric shock accidents, measurement of water resistance is crucial. However, this has been one of the overlooked research areas and it has been very difficult to measure the mixed up resistance components separately. In this paper, we measured a total resistance of apparatus and regarded it as a serial resistance of contact resistance and length dependant resistance. Measuring the resistance by varying the length of water stream, the variable resistance and fixed contact resistance appear, which are used to calculate the both components of resistances. In addition, the resistance of fire hose can be calculated from the parallel circuit which is formed by grounding the fire hose with the resistance of water stream. Results show that we can successfully measure the resistance per unit length of water stream and fire hose, thereby proving that this method is a facile way to measure water and fire hose resistance. However, many experiments are still required to obtain the precise contact resistance of ground under various condition and the resistance between the human body and fire hose.

Dynamic contact response of a finite beam on a tensionless Pasternak foundation under symmetric and asymmetric loading

  • Coskun, Irfan
    • Structural Engineering and Mechanics
    • /
    • v.34 no.3
    • /
    • pp.319-334
    • /
    • 2010
  • The dynamic response of a finite Bernoulli-Euler beam resting on a tensionless Pasternak foundation and subjected to a concentrated harmonic load is investigated in this study. This load may be applied at the center of the beam, or it may be offset from the center. Since the elastic foundation is assumed to be tensionless, the beam may lift off the foundation, resulting in contact and non-contact regions in the system. An analytical/numerical solution is obtained from the governing equations of the contact and non-contact regions to determine the coordinates of the lift-off points. Although there is no nonlinear term in the equations, the problem appears to be nonlinear since the contact regions are not known in advance. Due to that nonlinearity, the essentials of the problem (the coordinates of the lift-off points) are calculated numerically using the Newton-Raphson technique. The results, which represent the symmetric and asymmetric responses of the beam, are presented graphically in this work. They illustrate the effects of the forcing frequency and the beam length on the extent of the contact regions and displacements.