• Title/Summary/Keyword: contact hole

Search Result 276, Processing Time 0.035 seconds

Selective Contact Hole Filling by electroless Ni Plating (무전해 Ni 도금에 의한 선택적 CONTACT HOLE 충전)

  • 우찬희;권용환;김영기;박종완;이원해
    • Journal of Surface Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.189-206
    • /
    • 1992
  • The effect of activation and electroless nickel plating conditions on contact properties was investi-gated for selective electroless nickel plating of Si wafers in order to obtain an optimum condition of con-tact hole filling. According to RCA prosess, p-type silicon (100) surface was cleaned out and activated. The effects of temperature, DMAB concentration, time, and strirring were investigated for activation of p-type Si(100) surface. The optimal activation condition was 0.2M HF, 1mM PdCl2, 2mM EDTA,$ 70^{\circ}C$, and 90sec under ultrasonic vibration. In electroless nickel plating, the effect of temperature, DMAB concentra-tion, pH, and plating time were studied. The optimal plating condition found was 0.10M NiSO4.H2O, 0.11M Citrate, pH 6.8, $60^{\circ}C$, 30minutes. The contact resistance of films was comparatively low. It took 30minutes to obtain 1$\mu\textrm{m}$ thick film with 8mM DMAB concentration. The film surface roughness was improved with decreasing temperature and decreasing pH of the plating solution. The best quality of the film was obtained at the condition of temperature $60^{\circ}C$ and pH 6.0. The micro-vickers hardness of film was about 800Hv. Plating rate of nickel on the hole pattern was slower than that of nickel on the line pattern.

  • PDF

Identification of Contact State between Parts during Peg-in-Hole Process by Fuzzy Inference Method (Fuzzy 추론법에 의한 부품 삽입 공화의 접합상태 판별)

  • Chung, Gwang-Jo;Ryu, Sang-Uk;Lee, Hyon-Woo;Chong, Won-Yong;Lee, Soo-Heum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.80-88
    • /
    • 1994
  • In the automation of rigid parts mating process with the intelligent robots, Peg-In-Hole is the most available task since inserting is some analytic and needs suitable range of forces that can be controlled by induatrial manipulators. In this Peg-In-Hole process, it is very important to identify the contact state between tow parts, peg and hole, to build the strategies for robot motion that leads to avoid the jamming condition occurs during insertion process. In this paper, we adpopted 3 parameters for identification, lFzl, lFxy/Fzl, and lMxy/Fxyl, derived from axes value of Whitney's jamming diagram. Also, we defined the fuzzy membership functions for these parameters and developed the identification algorithm based on fuzzy inference method of max-product. As an experimental result, we obtained about 96% of identification ratio that could be raised up to industrial requirements by further research.

  • PDF

Nonlinear Analysis of Anchor Head for High Strength Steel Strand (고강도 강연선용 앵커헤드의 형상변화에 따른 비선형 거동특성 분석)

  • Noh, Myung-Hyun;Seong, Taek-Ryong;Kim, Jin-Kook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.163-173
    • /
    • 2012
  • This study covers the nonlinear analysis of anchor head for high strength prestressing strand and presents necessary process in improving the performance of anchor head. The surface of wedge for strand is contacted to the surface of the wedge hole on anchor head when it is fitted into the wedge hole, and the contact condition changes according to the level of load applied through the wedge. In order to analyze detailed behavior, nonlinear material model and contact element were used in analysis. It was found from the analysis that the behavior of anchor head is affected by the interaction with the wedge contacted so that the wedge in FE model should have the same figure as the actual object. Circular array of wedge hole presents better stress distribution than layer array even though the small difference in maximum deformation. Increment of thickness of anchor head and distance of wedge hole also improve the performance of anchor head.

Hydroelastic Vibration of a Rectangular Plate with a Rectangular Hole (직사각형 구멍을 갖는 직사각형 평판의 접수진동)

  • Kwak, Moon-K.;Han, Sang-Bo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.1
    • /
    • pp.29-37
    • /
    • 2012
  • This paper is concerned with the natural vibration characteristics of a rectangular plate with a rectangular hole in contact with the water. The addressed problem was solved by using the Rayleigh-Ritz method combined with the Green function method. This study presents the numerical approach, numerical results and experimental results. In addition, the validity of the approximate formula which mainly depends on the so-called non-dimensionalized added virtual mass incremental factor and the natural mode shape change due to the presence of the water were investigated. Experiments were also carried out to validate theoretical results. The theoretical results are in good agreement with the experimental results. It was found that the effect of a square hole on the natural frequencies of the square plate in contact with water is different from the effect of a square hole on the natural frequencies of the square plate in air and the approximate formula can predict lower natural frequencies in water with a good accuracy.

Ohmic Contact for Hole Injection Probed by Dark Injection Space-Charge-Limited Current Measurements

  • Song, Ok-Keun;Koo, Young-Mo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1061-1064
    • /
    • 2009
  • Through dark injection space-charge-limited current (DI-SCLC) and trap-free SCLC measurements, it has been demonstrated that an indium tin oxide (ITO)/buckminsterfullerene ($C_{60}$) electrode can form a quasi-Ohmic contact with N, N'-bis (naphthalen-1-yl)-N, N'-bis(phenyl) benzidine (NPB). The DI-SCLC results show a clear peak current along with a shift of the peak position as the field intensity varies, implying an Ohmic (or quasi-Ohmic) contact. A theoretical simulation of the SCLC also shows that ITO/$C_{60}$ forms an Ohmic contact with NPB. The Ohmic contact makes it possible to estimate the NPB hole mobility through the use of both DI-SCLC and trap-free SCLC analysis. This also contributes to a reduction in power consumption.

  • PDF

The Effects of High Pressure Water Contact State on Hydraulic Fracturing (고압수 접촉상태가 수압파쇄에 미치는 영향)

  • Lee, Sang Hun;Lim, Jong Se;Jang, Won Yil
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.409-417
    • /
    • 2016
  • The shale gas is emerging as one of the oil and gas resources which can replace the traditional oil and gas resources. As the shale layer where the shale gas is deposited has low permeability, the hydrofracturing method is required to improve the productivity. This study is designed to conduct the laboratory hydrofracturing test on the samples which are modeled after the drilling hole having the general drilling hole and spiral groove. And compare the initial fracturing pressure and fluid contact between them in order to the result of the hydrofracturing depending on the shape of the drilling hole. In addition, the results were compared with the numerical modeling values from 3DEC and they were also compared with the data from the advance researches. It was found from the study that rather than the contact area of the high pressures water, the force concentration depending on the form of guide hole was more effective in the hydrofracturing.

A Study on the Air Cushion Pad of Non-contact Glass Transportation Unit (비접촉식 유리 평판 이송 장치 공기 패드 형상에 대한 연구)

  • Jeon, Hyeon-Ju;Kim, Gwang-Seon;Im, Ik-Tae
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.138-144
    • /
    • 2006
  • Non-contact transportation of a large-sized glass plate using air cushion for the sputtering system of liquid crystal display panel was considered. The gas is injected through multiple small holes to maintain the force for levitating glass plate. Complex flow field and resulting pressure distribution on the glass surface was numerically studied to design the air injection pad. The exhaust hole size was varied to obtain evenly distributed pressure distribution at fixed diameter of the injection hole. Considering the force for levitating glass plate, the diameter of the exhaust hole of 30 to 40 times of the gas injection hole was recommended.

  • PDF

Numerical Study on the Air-Cushion Unit for Transportation of Large-Sized Glass Plate

  • Jun, Hyun-Joo;Kim, Kwang-Sun;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.59-64
    • /
    • 2007
  • Non-contact transportation of a large-sized glass plate using air cushion for the vertical sputtering system of liquid crystal display (LCD) panel was considered. The objective of the study was to design an air pad unit which was composed of multiple injection and exhaust holes and mass flow supplying pipe. The gas was injected through multiple small holes to maintain the force for levitating glass plate. After hitting the plate, the air was vented through exhaust holes. Complex flow field and resulting pressure distribution on the glass surface were numerically studied to design the air injection pad. The exhaust hole size was varied to obtain evenly distributed pressure distribution at fixed diameter of the injection hole. Considering the force for levitating glass plate, the diameter of the exhaust hole of 30 to 40 times of the gas injection hole was recommended.

  • PDF

Sensitivity of resistance forces to localized geometrical imperfections in movement of drill strings in inclined bore-holes

  • Gulyayev, V.I.;Khudoliy, S.N.;Andrusenko, E.N.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.1
    • /
    • pp.1-16
    • /
    • 2011
  • The inverse problem about the theoretical analysis of a drill string bending in a channel of an inclined bore-hole with localized geometrical imperfections is studied. The system of ordinary differential equations is first derived based on the theory of curvilinear flexible elastic rods. One can then use these equations to investigate the quasi-static effects of the drill string bending that may occur in the process of raising, lowering and rotation of the string inside the bore-hole. The method for numerical solution of the constructed equations is described. With the proposed method, the phenomenon of the drill column movement, its contact interaction with the bore-hole surface, and the frictional seizure can be simulated for different combinations of velocities, directions of rotation and axial motion of the string. Geometrical imperfections in the shape of localized smoothed breaks of the bore-hole axis line are considered. Some numerical examples are presented to illustrate the applicability of the method proposed.

Theoretical modelling of post - buckling contact interaction of a drill string with inclined bore-hole surface

  • Gulyayev, V.I.;Andrusenko, E.N.;Shlyun, N.V.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.4
    • /
    • pp.427-448
    • /
    • 2014
  • At present, the time of easy oil and gas is over. Now, the largest part of fossil fuels is concentrated in the deepest levels of tectonic structures and in the sea shelves. One of the most cumbersome operations of their extraction is the bore-hole drilling. In connection with austere tectonic and climate conditions, their drivage every so often is associated with great and diversified technological difficulties causing emergencies on frequent occasions. As a rule, they are linked with drill string accidents. A key role in prediction of these situations should play methods of theoretical modelling. For this reason, there is a growing need for development and implementation of new numerical methods for computer simulation of critical and post-critical behavior of drill strings (DSs). In this paper, the processes of non-linear deforming of a DS in cylindrical cavity of a deep bore-hole are considered. On the basis of the theory of curvilinear flexible rods, non-linear constitutive differential equations are deduced. The effects of the longitudinal non-uniform preloading, action of torque and interaction between the DS and the bore-hole surface are taken into account. Owing to the use of curvilinear coordinates in the constraining cylindrical surface and a specially chosen concomitant reference frame, it became possible to separate the desired variables and to reduce the total order of the equation system. To solve it, the method of continuation the solution by parameter and the transfer matrix technique are applied. As a result of the completed numerical analysis, the critical states of the DS loading in the cylindrical channels of inclined bore-holes are found. It is shown that the modes of the post-critical deforming of the DS are associated with its irregular spiral curving prevailing in the zone of bottom-hole-assembly. The possibility of invariant state generation during post-critical deforming is established, condition of its bifurcation is formulated. It is shown that infinite variety of loads can correspond to one geometrical configuration of the DS. They differ each from other by contact force functions.